Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1098 Accesses

Abstract

Recently, three-dimensional (3D) hierarchical architectures of nanosheets, nanoplates, nanotubes, nanowires, and nanospheres have attracted great interest in energy conversion and storage, nano-composites, sustainable catalysis, optoelectronics, and drug delivery systems, due to their outstanding electrochemical performance such as its ultrahigh surface-to-volume ratio, high porosity, strong mechanical strength, excellent electrical conductivity and fast mass, and electron transport kinetics [1, 2]. For example, various nanosheets, such as graphene and graphene oxide [39], layered double hydroxides [10], and natural clays [11], have been successfully applied in energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28–62.

    Article  Google Scholar 

  2. Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS. Ultralight and highly compressible graphene aerogels. Adv Mater. 2013;25:2219–3.

    Article  Google Scholar 

  3. Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX. Hierarchical nanocomposites of polyanilinenanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano. 2010;4(9):5019–6.

    Article  Google Scholar 

  4. Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, et al. A three-dimensional carbonnanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater. 2010;22(33):3723–8.

    Article  Google Scholar 

  5. Yang SB, Cui GL, Pang SP, Cao Q, Kolb U, Feng XL, et al. Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem. 2010;3(2):236–9.

    Article  Google Scholar 

  6. Yu DS, Dai LM. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett. 2010;1(2):467–70.

    Article  Google Scholar 

  7. Li SS, Luo YH, Lv W, Yu WJ, Wu SD, Hou PX, et al. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv Ener Mater. 2011;1(4):486–90.

    Article  Google Scholar 

  8. Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater. 2010;20(20):3595–602.

    Article  Google Scholar 

  9. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater. 2011;21(12):2366–75.

    Article  Google Scholar 

  10. Zhao MQ, Zhang Q, Jia XL, Huang JQ, Zhang YH, Wei F. Hierarchical composites of single/double-walled carbon nanotubes interlinked flakes from direct carbon deposition on layered double hydroxides. Adv Funct Mater. 2010;20(4):677–85.

    Article  Google Scholar 

  11. Zhang Q, Zhao MQ, Liu Y, Cao AY, Qian WZ, Lu YF, et al. Energy-absorbing hybrid composites based on alternate carbon-nanotube and inorganic layers. Adv Mater. 2009;21(28):2876–80.

    Article  Google Scholar 

  12. Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520–31.

    Article  Google Scholar 

  13. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845–54.

    Article  Google Scholar 

  14. Zhang H, Cao GP, Yang YS. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ Sci. 2009;2(9):932–43.

    Article  Google Scholar 

  15. Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci. 2011;4(5):1592–605.

    Article  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.

    Article  Google Scholar 

  17. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498–502.

    Article  Google Scholar 

  18. Bai H, Li C, Shi GQ. Functional composite materials based on chemically converted graphene. Adv Mater. 2011;23(9):1089–115.

    Article  Google Scholar 

  19. Guo SJ, Dong SJ. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev. 2011;40(5):2644–72.

    Article  Google Scholar 

  20. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537–41.

    Article  Google Scholar 

  21. Sun YQ, Wu QO, Shi GQ. Graphene based new energy materials. Ener Environ Sci. 2011;4(4):1113–32.

    Article  Google Scholar 

  22. Loh KP, Bao QL, Ang PK, Yang JX. The chemistry of graphene. J Mater Chem. 2010;20(12):2277–89.

    Article  Google Scholar 

  23. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater. 2010;22(35):3906–24.

    Article  Google Scholar 

  24. Liu HT, Liu YQ, Zhu DB. Chemical doping of graphene. J Mater Chem. 2011;21(10):3335–45.

    Article  Google Scholar 

  25. Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electro polymerization for high-performance flexible electrode. ACS Nano. 2009;3(7):1745–52.

    Article  Google Scholar 

  26. Yang SB, Feng XL, Wang L, Tang K, Maier J, Mullen K. Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed. 2010;49(28):4795–9.

    Article  Google Scholar 

  27. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater. 2009;19(3):438–47.

    Article  Google Scholar 

  28. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011;11(6):2472–7.

    Article  Google Scholar 

  29. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.

    Article  Google Scholar 

  30. Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. 2008;3(9):538–42.

    Article  Google Scholar 

  31. Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.

    Article  Google Scholar 

  32. Kim F, Cote LJ, Huang JX. Graphene oxide: surface activity and two-dimensional assembly. Adv Mater. 2010;22(17):1954–8.

    Article  Google Scholar 

  33. Park S, Mohanty N, Suk JW, Nagaraja A, An JH, Piner RD, et al. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater. 2010;22(15):1736–40.

    Article  Google Scholar 

  34. Yang XW, Zhu JW, Qiu L, Li D. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater. 2011;23(25):2833–8.

    Article  Google Scholar 

  35. Xu YX, Sheng KX, Li C, Shi GQ. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010;4(7):4324–30.

    Article  Google Scholar 

  36. Tang ZH, Shen SL, Zhuang J, Wang X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed. 2010;49(27):4603–7.

    Article  Google Scholar 

  37. Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed. 2010;49(52):10084–8.

    Article  Google Scholar 

  38. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424–8.

    Article  Google Scholar 

  39. Kotz R, Carlen M. Principles and applications of electrochemical capacitors. ElectrochimicaActa. 2000;45(15–16):2483–98.

    Article  Google Scholar 

  40. Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy incapacitors. Carbon. 2001;39(6):937–50.

    Article  Google Scholar 

  41. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.

    Article  Google Scholar 

  42. Figueiredo JL, Pereira MFR. The role of surface chemistry in catalysis with carbons. Catal Today. 2010;150(1–2):2–7.

    Article  Google Scholar 

  43. Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.

    Article  Google Scholar 

  44. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem. 2010;2(7):581–7.

    Article  Google Scholar 

  45. Lota G, Lota K, Frackowiak E. Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem Commun. 2007;9(7):1828–32.

    Article  Google Scholar 

  46. Boehm HP. Some aspects of the surface-chemistry of carbon-blacks and other carbons. Carbon. 1994;32(5):759–69.

    Article  Google Scholar 

  47. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37(9):1379–89.

    Article  Google Scholar 

  48. Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor J, et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J Am Chem Soc. 2010;132(28):9616–30.

    Article  Google Scholar 

  49. Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768–71.

    Article  Google Scholar 

  50. Loh KP, Bao QL, Goki Eda, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010;2(12):1015–24.

    Article  Google Scholar 

  51. Xu B, Yue SF, Sui ZY, Zhang XT, Hou SS, Cao GP, et al. What is the choice for supercapacitors: graphene or graphene oxide? Ener Environ Sci. 2011;4(8):2826–30.

    Article  Google Scholar 

  52. Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys. 2007;9(15):1774–85.

    Article  Google Scholar 

  53. Raymundo-Piñero E, Cadek M, Wachtler M, Béguin F. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. ChemSusChem. 2011;4(7):943–7.

    Article  Google Scholar 

  54. Zhu H, Wang XL, Yang F, Yang XR. Promising carbons for supercapacitors derived from fungi. Adv Mater. 2011;23(24):2745–8.

    Article  Google Scholar 

  55. Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768–71.

    Article  Google Scholar 

  56. Wei DC, Liu YQ, Wang Y, Zhang HL, Huang LP, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009;9(5):1752–8.

    Article  Google Scholar 

  57. Lv RT, Cui TX, Jun MS, Zhang QA, Cao AY, Su DS, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater. 2011;21(5):999–1006.

    Article  Google Scholar 

  58. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater. 2010;22(45):5202–5206.

    Article  Google Scholar 

  59. Xu F, Cai RJ, Zeng QC, Zou C, Wu DC, Li F, et al. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J MaterChem. 2011;21(6):1970–6.

    Google Scholar 

  60. Wang DW, Li F, Liu M, Lu GQ, Cheng HM. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed. 2008;47(2):373–6.

    Article  Google Scholar 

  61. Huang CW, Hsu CH, Kuo PL, Hsieh CT, Teng HS. Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon. 2011;49(3):895–903.

    Article  Google Scholar 

  62. Xu GH, Zheng C, Zhang Q, Huang JQ, Zhao MQ, Nie JQ, et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 2011;4(9):870–81.

    Article  Google Scholar 

  63. Chen CM, Zhang Q, Zhao XC, Zhang BS, Kong QQ, Yang MG, et al. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J Mater Chem. 2012;22:14076–84.

    Article  Google Scholar 

  64. Zhao XC, Wang AQ, Yan JW, Sun GQ, Sun LX, Zhang T. Synthesis and electrochemical performance of heteroatom-Incorporated ordered mesoporous carbons. Chem Mater. 2010;22(19):5463–73.

    Article  Google Scholar 

  65. Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, et al. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano. 2009;3(11):3730–6.

    Article  Google Scholar 

  66. Yang XQ, Wu DC, Chen XM, Fu RW. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C. 2010;114(18):8581–6.

    Article  Google Scholar 

  67. Chmiola J, Yushin G, Dash R, Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources. 2006;158(1):765–72.

    Article  Google Scholar 

  68. Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources. 2006;157(1):11–27.

    Article  Google Scholar 

  69. Portet C, Yushin G, Gogotsi Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon. 2007;45(13):2511–8.

    Article  Google Scholar 

  70. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater. 2001;11(5):387–92.

    Article  Google Scholar 

  71. Endo M, Kim YJ, Chino T, Shinya O, Matsuzawa Y, Suezaki H, et al. High-performance electric double-layer capacitors using mass-produced multi-walled carbon nanotube. Appl Phys A. 2006;82(4):559–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Meng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, CM. (2016). Hierarchical Amination of Graphene for Electrochemical Energy Storage. In: Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48676-4_3

Download citation

Publish with us

Policies and ethics