Skip to main content

Resummation Prediction on Top Quark Transverse Momentum Distribution at Large \(p_T\)

  • Chapter
  • First Online:
QCD Higher-Order Effects and Search for New Physics

Part of the book series: Springer Theses ((Springer Theses))

  • 433 Accesses

Abstract

The top quark is one of the third-generation quarks, proposed to exist in 1973 by Kobayashi and Maskawa to explain the observed CP violations in kaon decay [1]. However, it has not been directly observed until 1995 by CDF and DØ collaborations at the Tevatron [2, 3]. The reason is that the top quark is the heaviest particle discovered so far, with a mass close to the electroweak symmetry breaking scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  2. F. Abe et al., CDF Collaboration, Observation of top quark production in \(\bar{p}p \) collisions. Phys. Rev. Lett. 74, 2626–2631 (1995). arXiv:hep-ex/9503002

  3. S. Abachi et al., D0 Collaboration, Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995). arXiv:hep-ex/9503003

  4. ATLAS, CDF, CMS, D0 Collaboration, First combination of Tevatron and LHC measurements of the top-quark mass. arXiv:1403.4427

  5. A.H. Hoang, I.W. Stewart, Top mass measurements from jets and the tevatron top-quark mass. Nucl. Phys. Proc. Suppl. 185, 220–226 (2008). arXiv:0808.0222

    Article  ADS  Google Scholar 

  6. A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Hoche et al., General-purpose event generators for LHC physics. Phys. Rept. 504, 145–233 (2011). arXiv:1101.2599

    Article  ADS  Google Scholar 

  7. J. Gao, C.S. Li, H.X. Zhu, Top quark decay at next-to-next-to leading order in QCD. Phys. Rev. Lett. 110, 042001 (2013). arXiv:1210.2808

    Article  ADS  Google Scholar 

  8. K. Olive et al., Particle Data Group Collaboration, Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  9. M. Czakon, P. Fiedler, A. Mitov, Total top-quark pair-production cross section at hadron colliders through \({\cal O}({\alpha _{s}^{4}})\). Phys. Rev. Lett. 110, 252004 (2013). arXiv:1303.6254

  10. V.M. Abazov et al., D0 Collaboration, Observation of single top-quark production. Phys. Rev. Lett. 103, 092001 (2009). arXiv:0903.0850

  11. T. Aaltonen et al., CDF Collaboration, First observation of electroweak single top quark production. Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885

  12. G. Aad et al., ATLAS Collaboration, Measurement of the t-channel single top-quark production cross section in pp collisions at \(\sqrt{s}\) = 7 TeV with the ATLAS detector. Phys. Lett. B 717, 330–350 (2012). arXiv:1205.3130

  13. S. Chatrchyan et al., CMS Collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \(\sqrt{s} =\) 7 TeV. JHEP 1212, 035 (2012). arXiv:1209.4533

  14. V. Khachatryan et al., C.M.S. Collaboration, Measurement of the t-channel single-top-quark production cross section and of the \(\mid V_{tb} \mid \)= 8 TeV. JHEP 1406, 090 (2014). arXiv:1403.7366

  15. G. Aad et al., ATLAS Collaboration, Comprehensive measurements of \(t\) TeV with the ATLAS detector. Phys. Rev. D 90(11), 112006 (2014). arXiv:1406.7844

  16. G. Bordes, B. van Eijk, Calculating QCD corrections to single top production in hadronic interactions. Nucl. Phys. B 435, 23–58 (1995)

    Article  ADS  Google Scholar 

  17. T. Stelzer, S. Willenbrock, Single top quark production via \(q \bar{q} \rightarrow t \bar{b}\). Phys. Lett. B 357, 125–130 (1995). arXiv:hep-ph/9505433

  18. B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, The Fully differential single top quark cross-section in next to leading order QCD. Phys. Rev. D 66, 054024 (2002). arXiv:hep-ph/0207055

  19. Z. Sullivan, Understanding single-top-quark production and jets at hadron colliders. Phys. Rev. D 70, 114012 (2004). arXiv:hep-ph/0408049

  20. J.M. Campbell, R.K. Ellis, F. Tramontano, Single top production and decay at next-to-leading order. Phys. Rev. D 70, 094012 (2004). arXiv:hep-ph/0408158

  21. Q.-H. Cao, C.P. Yuan, Single top quark production and decay at next-to-leading order in hadron collision. Phys. Rev. D 71, 054022 (2005). arXiv:hep-ph/0408180

  22. Q.-H. Cao, R. Schwienhorst, J.A. Benitez, R. Brock, C.P. Yuan, Next-to-leading order corrections to single top quark production and decay at the tevatron: 2. \(t\)-channel process. Phys. Rev. D 72, 094027 (2005). arXiv:hep-ph/0504230

  23. J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, NLO predictions for \(t\)-channel production of single top and fourth generation quarks at hadron colliders. JHEP 10, 042 (2009). arXiv:0907.3933

    Article  ADS  Google Scholar 

  24. J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, Next-to-leading-order predictions for t-channel single-top production at hadron colliders. Phys. Rev. Lett. 102, 182003 (2009). arXiv:0903.0005

    Article  ADS  Google Scholar 

  25. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Single-top production in MC@NLO. JHEP 03, 092 (2006). arXiv:hep-ph/0512250

    Google Scholar 

  26. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, Single-top hadroproduction in association with a W boson. JHEP 07, 029 (2008). arXiv:0805.3067

    Article  ADS  Google Scholar 

  27. S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. JHEP 09, 111 (2009). arXiv:0907.4076

    Article  ADS  Google Scholar 

  28. S. Hoche, Introduction to parton-shower event generators, in Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014) Boulder, Colorado, 2–27 June, 2014. arXiv:1411.4085

  29. N. Kidonakis, Single top production at the tevatron: threshold resummation and finite-order soft gluon corrections. Phys. Rev. D 74, 114012 (2006). arXiv:hep-ph/0609287

  30. N. Kidonakis, Higher-order soft gluon corrections in single top quark production at the LHC. Phys. Rev. D 75, 071501 (2007). arXiv:hep-ph/0701080

  31. N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys. Rev. D 83, 091503 (2011). arXiv:1103.2792

    Article  ADS  Google Scholar 

  32. C.W. Bauer, S. Fleming, M.E. Luke, Summing Sudakov logarithms in B \(\rightarrow X_s\) gamma in effective field theory. Phys. Rev. D 63, 014006 (2000). arXiv:hep-ph/0005275

  33. C.W. Bauer, S. Fleming, D. Pirjol, I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays. Phys. Rev. D 63, 114020 (2001). arXiv:hep-ph/0011336

  34. C.W. Bauer, I.W. Stewart, Invariant operators in collinear effective theory. Phys. Lett. B 516, 134–142 (2001). arXiv:hep-ph/0107001

    Google Scholar 

  35. C.W. Bauer, D. Pirjol, I.W. Stewart, Soft-collinear factorization in effective field theory. Phys. Rev. D 65, 054022 (2002). arXiv:hep-ph/0109045

  36. T. Becher, M. Neubert, Threshold resummation in momentum space from effective field theory. Phys. Rev. Lett. 97, 082001 (2006). arXiv:hep-ph/0605050

  37. A. Idilbi, X.-D. Ji, Threshold resummation for Drell-Yan process in soft-collinear effective theory. Phys. Rev. D 72, 054016 (2005). arXiv:hep-ph/0501006

  38. A. Idilbi, X.-D. Ji, F. Yuan, Transverse momentum distribution through soft-gluon resummation in effective field theory. Phys. Lett. B 625, 253–263 (2005). arXiv:hep-ph/0507196

    Google Scholar 

  39. T. Becher, M. Neubert, G. Xu, Dynamical threshold enhancement and resummation in Drell- Yan production. JHEP 07, 030 (2008). arXiv:0710.0680

    Article  ADS  Google Scholar 

  40. I.W. Stewart, F.J. Tackmann, W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets. Phys. Rev. D81, 094035 (2010). arXiv:0910.0467

  41. Y. Gao, C.S. Li, J.J. Liu, Transverse momentum resummation for Higgs production in soft-collinear effective theory. Phys. Rev. D 72, 114020 (2005). arXiv:hep-ph/0501229

  42. V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Origin of the large perturbative corrections to higgs production at hadron colliders. Phys. Rev. D 79, 033013 (2009). arXiv:0808.3008

    Article  ADS  Google Scholar 

  43. V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Renormalization-group improved prediction for higgs production at hadron colliders. Eur. Phys. J. C 62, 333–353 (2009). arXiv:0809.4283

    Article  ADS  Google Scholar 

  44. H.X. Zhu, C.S. Li, J.J. Zhang, H. Zhang, Z. Li, Threshold resummation effects in neutral higgs boson production by bottom quark fusion at the CERN large hadron collider. Phys. Rev. D 79, 113005 (2009). arXiv:0903.5047

    Article  ADS  Google Scholar 

  45. S. Mantry, F. Petriello, Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory. Phys. Rev. D81, 093007 (2010). arXiv:0911.4135

  46. C. Lee, G. Sterman, Momentum flow correlations from event shapes: factorized soft gluons and soft-collinear effective theory. Phys. Rev. D 75, 014022 (2007). arXiv:hep-ph/0611061

  47. S. Fleming, A.H. Hoang, S. Mantry, I.W. Stewart, Jets from massive unstable particles: top-mass determination. Phys. Rev. D 77, 074010 (2008). arXiv:hep-ph/0703207

  48. S. Fleming, A.H. Hoang, S. Mantry, I.W. Stewart, Top jets in the peak region: factorization analysis with NLL resummation. Phys. Rev. D 77, 114003 (2008). arXiv:0711.2079

    Article  ADS  Google Scholar 

  49. C.W. Bauer, S.P. Fleming, C. Lee, G. Sterman, Factorization of e+e- event shape distributions with hadronic final states in soft collinear effective Theory. Phys. Rev. D 78, 034027 (2008). arXiv:0801.4569

    Article  ADS  Google Scholar 

  50. M.D. Schwartz, Resummation and NLO matching of event shapes with effective field theory. Phys. Rev. D 77, 014026 (2008). arXiv:0709.2709

    Article  ADS  Google Scholar 

  51. A. Idilbi, C. Kim, T. Mehen, Factorization and resummation for single color-octet scalar production at the LHC. Phys. Rev. D 79, 114016 (2009). arXiv:0903.3668

    Article  ADS  Google Scholar 

  52. L.L. Yang, C.S. Li, Y. Gao, J.J. Liu, Threshold resummation effects in direct top quark production at hadron colliders. Phys. Rev. D 73, 074017 (2006). arXiv:hep-ph/0601180

  53. L.L. Yang, C.S. Li, J. Gao, J. Wang, NNLL momentum-space threshold resummation in direct top quark production at the LHC. JHEP 12, 123 (2014). arXiv:1409.6959

    Article  ADS  Google Scholar 

  54. H.X. Zhu, C.S. Li, J. Wang, J.J. Zhang, Factorization and resummation of s-channel single top quark production. JHEP 1102, 099 (2011). arXiv:1006.0681

  55. A.V. Manohar, Deep inelastic scattering as x \(\rightarrow \) 1 using soft-collinear effective theory. Phys. Rev. D 68, 114019 (2003). arXiv:hep-ph/0309176

  56. J. Chay, C. Kim, Deep inelastic scattering near the endpoint in soft-collinear effective theory. Phys. Rev. D 75, 016003 (2007). arXiv:hep-ph/0511066

  57. P.-Y. Chen, A. Idilbi, X.-D. Ji, QCD factorization for deep-inelastic scattering at large Bjorken x(B) approx. 1-O(Lambda(QCD)/Q). Nucl. Phys. B 763, 183–197 (2007). arXiv:hep-ph/0607003

    Google Scholar 

  58. T. Becher, M.D. Schwartz, Direct photon production with effective field theory. JHEP 02, 040 (2010). arXiv:0911.0681

    Article  ADS  MATH  Google Scholar 

  59. T. Becher, C. Lorentzen, M.D. Schwartz, Resummation for W and Z production at large pT. Phys. Rev. Lett. 108, 012001 (2012). arXiv:1106.4310

    Article  ADS  Google Scholar 

  60. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Threshold expansion at order \(alpha_s^4\) for the t-tbar invariant mass distribution at hadron colliders. arXiv:0912.3375

  61. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Renormalization-group improved predictions for top-quark pair production at Hadron colliders. arXiv:1003.5827

  62. M. Beneke, P. Falgari, S. Klein, C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation. Nucl. Phys. B 855, 695–741 (2012). arXiv:1109.1536

    Article  ADS  MATH  Google Scholar 

  63. E. Laenen, G. Oderda, G. Sterman, Resummation of threshold corrections for single particle inclusive cross-sections. Phys. Lett. B 438, 173–183 (1998). arXiv:hep-ph/9806467

    Google Scholar 

  64. C.W. Bauer, A. Hornig, F.J. Tackmann, Factorization for generic jet production. Phys. Rev. D 79, 114013 (2009). arXiv:0808.2191

    Article  ADS  Google Scholar 

  65. C.W. Bauer, N.D. Dunn, A. Hornig, Factorization of boosted multijet processes for threshold resummation. Phys. Rev. D 82, 054012 (2010). arXiv:1002.1307

    Article  ADS  Google Scholar 

  66. N. Isgur, M.B. Wise, Weak decays of heavy mesons in the static quark approximation. Phys. Lett. B 232, 113 (1989)

    Article  ADS  Google Scholar 

  67. V. Ahrens, M. Neubert, L. Vernazza, Structure of infrared singularities of gauge-theory amplitudes at three and four loops. JHEP 1209, 138 (2012). arXiv:1208.4847

    Article  ADS  Google Scholar 

  68. T. Becher, M. Neubert, Infrared singularities of QCD amplitudes with massive partons. Phys. Rev. D 79, 125004 (2009). arXiv:0904.1021

    Article  ADS  Google Scholar 

  69. I. Korchemskaya, G. Korchemsky, On light-like wilson loops. Phys. Lett. B 287(1–3), 169–175 (1992)

    Article  ADS  Google Scholar 

  70. T. Becher, M. Neubert, B.D. Pecjak, Factorization and momentum-space resummation in deep- inelastic scattering. JHEP 01, 076 (2007). arXiv:hep-ph/0607228

    Google Scholar 

  71. T. Becher, M. Neubert, Toward a NNLO calculation of the \(\bar{B} \rightarrow X_s\) + gamma decay rate with a cut on photon energy. II: Two-loop result for the jet function. Phys. Lett. B 637, 251–259 (2006). arXiv:hep-ph/0603140

  72. Tevatron Electroweak Working Group, CDF, D0 Collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb-1 of data. arXiv:1107.5255

  73. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009). arXiv:0901.0002

    Article  ADS  Google Scholar 

  74. J. Wang, C.S. Li, H.X. Zhu, Resummation prediction on top quark transverse momentum distribution at large \(p_T\). Phys. Rev. D 87(3), 034030 (2013). arXiv:1210.7698

  75. N. Kidonakis, Top-quark transverse-momentum distributions in t-channel single-top production. Phys. Rev. D 88(3), 031504 (2013). arXiv:1306.3592

  76. M. Brucherseifer, F. Caola, K. Melnikov, On the NNLO QCD corrections to single-top production at the LHC. Phys. Lett. B 736, 58–63 (2014). arXiv:1404.7116

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J. (2016). Resummation Prediction on Top Quark Transverse Momentum Distribution at Large \(p_T\) . In: QCD Higher-Order Effects and Search for New Physics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48673-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48673-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48671-9

  • Online ISBN: 978-3-662-48673-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics