Skip to main content

Foundations of the Quantum Chromodynamics

  • Chapter
  • First Online:
QCD Higher-Order Effects and Search for New Physics

Part of the book series: Springer Theses ((Springer Theses))

  • 457 Accesses

Abstract

Quantum chromodynamics (QCD) is a theory to describe the strong interaction in hadrons. It was developed in the history of understanding the structure of the hadrons. In the 1950s, a large number of hadrons were discovered in experiments.

The original version of this chapter was revised: Incorrect equation has been corrected. The erratum to this chapter is available at 10.1007/978-3-662-48673-3_8

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-662-48673-3_8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, “local” means that the Lagrangian is a function of fields with the same space-time point. Nonlocal fields and interactions have been discussed in Refs. [12,13,14].

  2. 2.

    All the fields here are renormalized but the subscript ’r’ is omitted for simplicity.

References

  1. M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067–1084 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. CERN-TH 401

    Google Scholar 

  3. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking 2. CERN-TH 412

    Google Scholar 

  4. H. Fritzsch, M. Gell-Mann, Current algebra: quarks and what else? in eConf C720906V2, pp. 135–165 (1972). arXiv:hep-ph/0208010

  5. H. Fritzsch, M. Gell-Mann, H. Leutwyler, Advantages of the color octet gluon picture. Phys. Lett. B 47, 365–368 (1973)

    Article  ADS  Google Scholar 

  6. R. Feynman, Photon Hadron Interactions. W.A. Benjamin, New York

    Google Scholar 

  7. J. Bjorken, Asymptotic sum rules at infinite momentum. Phys. Rev. 179, 1547–1553 (1969)

    Article  ADS  Google Scholar 

  8. J. Callan, Curtis G., D.J. Gross, Bjorken scaling in quantum field theory. Phys. Rev. D 8, 4383–4394 (1973)

    Google Scholar 

  9. D. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

    Article  ADS  Google Scholar 

  10. D. Gross, F. Wilczek, Asymptotically free gauge theories. 1. Phys. Rev. D 8, 3633–3652 (1973)

    Google Scholar 

  11. G. ’t Hooft, Renormalization of massless yang-mills fields. Nucl. Phys. B 33, 173–199 (1971)

    Google Scholar 

  12. H. Yukawa, Quantum theory of nonlocal fields. 1. Free fields. Phys. Rev. 77, 219–226 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. H. Yukawa, Quantum theory of nonlocal fields. 2: irreducible fields and their interaction. Phys. Rev. 80, 1047–1052 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Pais, G. Uhlenbeck, On field theories with nonlocalized action. Phys. Rev. 79, 145–165 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. G. ’t Hooft, M.J.G. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)

    Google Scholar 

  16. C.G. Bollini, J.J. Giambiagi, Lowest order divergent graphs in nu-dimensional space. Phys. Lett. B 40, 566–568 (1972)

    Article  ADS  Google Scholar 

  17. J.F. Ashmore, A method of gauge invariant regularization. Lett. Nuovo Cim. 4, 289–290 (1972)

    Article  Google Scholar 

  18. G.M. Cicuta, E. Montaldi, Analytic renormalization via continuous space dimension. Lett. Nuovo Cim. 4, 329–332 (1972)

    Article  Google Scholar 

  19. N. Bogoliubov, O. Parasiuk, Acta Math. 97, 227 (1957)

    Article  MathSciNet  Google Scholar 

  20. K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization. Commun. Math. Phys. 2, 301–326 (1966)

    Article  ADS  MATH  Google Scholar 

  21. W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space. Commun. Math. Phys. 15, 208–234 (1969)

    Article  ADS  MATH  Google Scholar 

  22. G. ’t Hooft, Dimensional regularization and the renormalization group. Nucl. Phys. B 61, 455–468 (1973)

    Google Scholar 

  23. S. Weinberg, New approach to the renormalization group. Phys. Rev. D 8, 3497–3509 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J. (2016). Foundations of the Quantum Chromodynamics. In: QCD Higher-Order Effects and Search for New Physics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48673-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48673-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48671-9

  • Online ISBN: 978-3-662-48673-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics