Skip to main content

Set Optimization—A Rather Short Introduction

  • Conference paper
  • First Online:
Set Optimization and Applications - The State of the Art

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 151))

Abstract

Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In contrast to many duality results in vector optimization, this can bee seen as a realization of one of the many ‘duality principles in optimization theory that relate a problem expressed in terms of vectors in a space to a problem expressed in terms of hyperplanes in the space,’ see [160, p. 8].

  2. 2.

    For apparent reasons, we would like to call this just “set optimization,” but this term is currently used for just too many other purposes.

  3. 3.

    R. T. Rockafellar and R.-B. Wets also remark on p. 15 of [197] that the second distributivity law does not extend to all of \(\overline{\mathrm {I\negthinspace R}}\) which is another motivation for the concept of “conlinear” spaces. Finally, it is interesting to note that the authors of [197] consider it a matter of cause to associate minimization with inf-addition (see p. 15). In the set optimization community, there is no clear consensus yet about which relation to use in what context and for what purpose. However, this note makes a clear point towards [197]: associate \(\preccurlyeq _C\) with minimization and \(\curlyeqprec _C\) with maximization because the theory works for these cases. One should have a very strong reason for doing otherwise and be advised that in this case many standard mathematical tools just don’t work.

  4. 4.

    Sophie Qingzhen Wang provided the hint to this observation.

  5. 5.

    ‘In fact the great watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity’.

  6. 6.

    ‘Theoretically, what modern optimization can solve well are convex optimization problems’.

References

  1. Alonso, M., Rodríguez-Marín, L.: Set-relations and optimality conditions in set-valued maps. Nonlinear Anal. 63(8), 1167–1179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araya, Y.: Four types of nonlinear scalarizations and some applications in set optimization. Nonlinear Anal. 75(9), 3821–3835 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis Modern Birkhäuser Classics. Birkhäuser, Boston (2009). Reprint of the 1990 edition

    Book  Google Scholar 

  5. Azimov, A.Y.: Duality of multiobjective problems. Math. USSR-Sb. 59(2), 515 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Azimov, A.Y.: Duality for set-valued multiobjective optimization problems, part 1: mathematical programming. J. Optim. Theory Appl. 137(1), 61–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baier, J., Jahn, J.: On subdifferentials of set-valued maps. J. Optim. Theory Appl. 100(1), 233–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal, A., Nemirovskiĭ, A .S.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS & SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  9. Benoist, J., Popovici, N.: Characterizations of convex and quasiconvex set-valued maps. Math. Methods Oper. Res. 57(3), 427–435 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benson, H.P.: Further analysis of an outcome set-based algorithm for multiple-objective linear programming. J. Optim. Theory Appl. 97(1), 1–10 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Glob. Optim. 13(1), 1–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beresnev, V.V.: Mappings conjugate to convex many-valued mappings. Cybern. Syst. Anal. 9(5), 813–819 (1973)

    Article  Google Scholar 

  13. Blyth, T.S., Janowitz, M.F.: Residuation Theory. Pergamon Press, Oxford (1972)

    MATH  Google Scholar 

  14. Borwein, J.M.: Multivalued convexity and optimization: a unified approach to inequality and equality constraints. Math. Program. 13(2), 183–199 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Borwein, J.M.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15(1), 57–63 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Borwein, J.M.: A Lagrange multiplier theorem and a sandwich theorem for convex relations. Math. Scand. 48(2), 189–204 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Borwein, J.M., Penot, J.P., Thera, M.: Conjugate convex operators. J. Math. Anal. Appl. 102(2), 399–414 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bossert, W.: On the extension of preferences over a set to the power set: an axiomatic characterization of a quasi-ordering. J. Econ. Theory 49(1), 84–92 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boţ, R.I., Grad, S.-M., Wanka, G.: Duality in Vector Optimization. Vector Optimization. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  20. Boţ, R.I., Grad, S.-M., Wanka, G.: Classical linear vector optimization duality revisited. Optim. Lett. 6(1), 199–210 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Breckner, W.W., Kolumbán, I.: Konvexe Optimierungsaufgaben in topologischen Vektorräumen. Mathematica Scandinavica 25, 227–247 (1969)

    Article  MATH  Google Scholar 

  22. Brink, C.: Power structures. Algebra Univers. 30(2), 177–216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Brumelle, S.L.: Convex operators and supports. Math. Oper. Res. 3(2), 171–175 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brumelle, S.L.: Duality for multiple objective convex programs. Math. Oper. Res. 6(2), 159–172 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cascos, I., Molchanov, I.: Multivariate risks and depth-trimmed regions. Finance. Stoch. 11, 373–397 (2007)

    Google Scholar 

  26. Chen, G.Y., Huang, X.X.: Ekeland’s \(\varepsilon \)-variational principle for set-valued mappings. Math. Methods Oper. Res. 48(2), 181–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, G.Y., Huang, X.X., Hou, S.H.: General Ekeland’s variational principle for set-valued mappings. J. Optim. Theory Appl. 106(1), 151–164 (2000)

    Google Scholar 

  28. Chen, G.Y., Huang, X.X., Yang, X.: Vector Optimization: Set-Valued and Variational Analysis. LNEMS, vol. 541. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Chen, G.Y., Jahn, J.: Optimality conditions for set-valued optimization problems. Math. Methods Oper. Res. 48(2), 187–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chiriaev, D., Walster. G.W.: Interval arithmetic specification (1998). Available online at http://www.mscs.mu.edu/~globsol/walster-papers.html [69]

  31. Cohen, G., Gaubert, S., Quadrat, J.-P., Singer, I.: Max-plus convex sets and functions. In: Litvinov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics, vol. 377, pp. 105–129, Am. Math. Soc., Providence (2005)

    Google Scholar 

  32. Corley, H.W.: Existence and Lagrangian duality for maximizations of set-valued functions. J. Optim. Theory Appl. 54(3), 489–501 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Corley, H.W.: Optimality conditions for maximizations of set-valued functions. J. Optim. Theory Appl. 58(1), 1–10 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Crespi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions for constrained set-valued optimization. Pac. J. Optim. 2, 225–239 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Crespi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions in set-valued optimization. Math. Methods Oper. Res. 63(1), 87–106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Crespi, G.P., Hamel, A.H., Schrage, C.: A Minty variational principle for set optimization. J. Math. Anal. Appl. 423, 770–796 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Cross, R.: Multivalued Linear Operators. Pure and Applied Mathematics, vol. 213. Marcel Dekker, Inc., New York (1998)

    MATH  Google Scholar 

  38. Csirmaz, L.: Using multiobjective optimization to map the entropy region of four random variables Comput. Optim. Appl. (2015). doi:10.1007/s10589-015-9760-6

  39. Dauer, J.P.: Analysis of the objective space in multiple objective linear programming. J. Math. Anal. Appl. 126(2), 579–593 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dauer, J.P., Liu, Y.-H.: Solving multiple objective linear programs in objective space. Eur. J. Oper. Res. 46(3), 350–357 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dauer, J.P., Saleh, O.A.: Constructing the set of efficient objective values in multiple objective linear programs. Eur. J. Oper. Res. 46(3), 358–365 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Day, M.M.: Normed Linear Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete Band, vol. 21. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  43. Dedekind, R.: Stetigkeit und irrationale Zahlen. 6te unveränderte Aufl. Friedr. Vieweg & Sohn, Braunschweig (1960)

    Google Scholar 

  44. Denneberg, D.: Non-Additive Measure and Integral. Springer, Netherlands (1994)

    Book  MATH  Google Scholar 

  45. Dien, P.H.: Locally Lipschitzian set-valued maps and generalized extremal problems with inclusion constraints. Acta Math. Vietnam. 8(1), 109–122 (1983)

    MathSciNet  MATH  Google Scholar 

  46. Dilworth, R.P.: Abstract residuation over lattices. Bull. Am. Math. Soc. 44(4), 262–268 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  47. Dolecki, S., Malivert, C.: General duality in vector optimization. Optimization 27(1–2), 97–119 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Durea, M., Strugariu, R.: On some fermat rules for set-valued optimization problems. Optimization 60(5), 575–591 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Bensons outer approximation algorithm for multiple objective linear programming. J. Glob. Optim. 52(4), 757–778 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Elster, K.-H., Nehse, R.: Konjugierte Operatoren und Subdifferentiale. Math. Operationsforsch. u. Statist. 6(4), 641–657 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  51. Farkas, W., Koch-Medina, P., Munari, C.: Measuring risk with multiple eligible assets, Math. Finance Econ. 9 (1), 3–27 (2015)

    Google Scholar 

  52. Farkas, W., Koch-Medina, P., Munari, C.-A.: Beyond cash-additive risk measures: when changing the numéraire fails. Finance. Stoch. 18(1), 145–173 (2014)

    Google Scholar 

  53. Feinstein, Z., Rudloff, B.: Multi-portfolio time consistency for set-valued convex and coherent risk measures. Finance Stoch. 19 (1), 67–107 (2015)

    Google Scholar 

  54. Ferro, F.: An optimization result for set-valued mappings and a stability property in vector problems with constraints. J. Optim. Theory Appl. 90(1), 63–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ferro, F.: Optimization and stability results through cone lower semicontinuity. Set-valued Anal. 5(4), 365–375 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Fishburn, P.C.: Signed orders and power set extensions. J. Econ. Theory 56(1), 1–19 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  57. Flores-Bazán, F.: Optimality conditions in non-convex set-valued optimization. Math. Methods Oper. Res. 53(3), 403–417 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48(2), 881–908 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd extended edn. Walter de Gruyter & Co., Berlin (2011)

    Google Scholar 

  60. Fuchssteiner, B., Lusky, W.: Convex Cones: North-Holland Mathematics Studies, vol. 56. North-Holland Publishing Co., Amsterdam (1981)

    MATH  Google Scholar 

  61. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier B. V, Amsterdam (2007)

    MATH  Google Scholar 

  62. Gaubert, S., Plus, M.: Methods and applications of (max,+) linear algebra. STACS 97, pp. 261–282. Springer, Berlin (1997)

    Chapter  Google Scholar 

  63. Gerth (Tammer), C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67(2), 297–320 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  64. Getán, J., Martínez-Legaz, J.-E., Singer, I.: \((\ast,s)\)-dualities. J. Math. Sci. 115(4), 2506–2541 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Glover, B.M., Jeyakumar, V., Rubinov, A.M.: A general approach to dual characterizations of solvability of inequality systems with applications. J. Convex Anal. 2(1–2), 309–344 (1995)

    MathSciNet  MATH  Google Scholar 

  66. Godini, G.: A framework for best simultaneous approximation: normed almost linear spaces. J. Approx. Theory 43(4), 338–358 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  67. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics 17. Springer, New York (2003)

    MATH  Google Scholar 

  68. Gorokhovik, V.V.: Representations of affine multifunctions by affine selections. Set-valued Anal. 16(2–3), 185–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Götz, A., Jahn, J.: The Lagrange multiplier rule in set-valued optimization. SIAM J. Optim. 10(2), 331–344 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  70. Gourion, D., Luc, Dinh The: Generating the weakly efficient set of nonconvex multiobjective problems. J. Glob. Optim. 41(4), 517–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Gourion, D., Luc, Dinh The: Finding efficient solutions by free disposal outer approximation. SIAM J. Optim. 20(6), 2939–2958 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75(4), 1822–1833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  73. Ha, T.X.D.: The Ekeland variational principle for set-valued maps involving coderivatives. J. Math. Anal. Appl. 286(2), 509–523 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  74. Ha, T.X.D.: Lagrange multipliers for set-valued optimization problems associated with coderivatives. J. Math. Anal. Appl. 311(2), 647–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  75. Ha, T.X.D.: Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124(1), 187–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. Hadwiger, H.: Minkowskische Addition und Substraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt. Math. Z. 53, 210–218 (1950)

    Google Scholar 

  77. Hamel, A.H.: Variational Principles on Metric and Uniform Spaces. Habilitation thesis, Martin-Luther-Universität Halle-Wittenberg (2005)

    Google Scholar 

  78. Hamel, A.H.: A duality theory for set-valued functions I: Fenchel conjugation theory. Set-valued Var. Anal. 17(2), 153–182 (2009)

    Google Scholar 

  79. Hamel, A.H.: A Fenchel-Rockafellar duality theorem for set-valued optimization. Optimization 60(8–9), 1023–1043 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  80. Hamel, A.H., Heyde, F.: Duality for set-valued measures of risk. SIAM J. Financ. Math. 1(1), 66–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  81. Hamel, A.H., Heyde, F., Löhne, A., Tammer, C., Winkler, K.: Closing the duality gap in linear vector optimization. J. Convex Anal. 11(1), 163–178 (2004)

    MathSciNet  MATH  Google Scholar 

  82. Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5(1), 1–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  83. Hamel, A.H., Löhne, A.: Minimal set theorems. Preprint #11, Martin-Luther-Universität Halle-Wittenberg (2002)

    Google Scholar 

  84. Hamel, A.H., Löhne, A.: A minimal point theorem in uniform spaces. In Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday. vol. 1, 2, pp. 577–593. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  85. Hamel, A.H., Löhne, A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear Convex Anal. 7(1), 19–37 (2006)

    MathSciNet  MATH  Google Scholar 

  86. Hamel, A.H., Löhne, A.: Lagrange duality in set optimization. J. Optim. Theory Appl. 161(2), 368–397 (2014)

    Google Scholar 

  87. Hamel, A.H., Löhne, A., Rudloff, B.: A Benson type algorithm for linear vector optimization and applications. J. Glob. Optim. 59(4), 811–836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  88. Hamel, A.H., Rudloff, B., Yankova, M.: Set-valued average value at risk and its computation. Math. Financ. Econ. 7(2), 229–246 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  89. Hamel, A.H., Schrage, C.: Notes on extended real- and set-valued functions. J. Convex Anal. 19(2), 355–384 (2012)

    MathSciNet  MATH  Google Scholar 

  90. Hamel, A.H., Schrage, C.: Directional derivatives and subdifferentials of set-valued convex functions. Pac. J. Optim., 10(4), 667–689 (2014)

    Google Scholar 

  91. Hamel, A.H.: Optimal control with set-valued objective function. In: Proceedings of the 6th Portuguese Conference on Automatic Control–Controlo, pp. 648–652. Faro, Portugal (2004)

    Google Scholar 

  92. Hernández, E., Löhne, A., Rodríguez-Marín, L., Tammer, C.: Lagrange duality, stability and subdifferentials in vector optimization. Optimization 62(3), 415–428 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  93. Hernández, E., Rodríguez-Marín, L.: Duality in set optimization with set-valued maps. Pac. J. Optim. 3, 245–255 (2007)

    MathSciNet  MATH  Google Scholar 

  94. Hernández, E., Rodríguez-Marín, L.: Existence theorems for set optimization problems. Nonlinear Anal. 67(6), 1726–1736 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  95. Hernández, E., Rodríguez-Marín, L.: Lagrangian duality in set-valued optimization. J. Optim. Theory Appl. 134(1), 119–134 (2007)

    Google Scholar 

  96. Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325(1), 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  97. Hernández, E., Rodríguez-Marín, L., Sama, M.: Some equivalent problems in set optimization. Pac. J. Optim. 37(1), 61–64 (2009)

    MathSciNet  MATH  Google Scholar 

  98. Hernández, L., Rodríguez-Marín, E.: Weak and strong subgradients of set-valued maps. J. Optim. Theory Appl. 149(2), 352–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  99. Heyde, F.: Coherent risk measures and vector optimization. In: Küfer, K.-H., Rommelfanger, H., Tammer, C., Winkler, K. (eds.) Multicriteria Decision Making and Fuzzy Systems, pp. 3–12. Shaker Verlag, Aachen (2006)

    Google Scholar 

  100. Heyde, F.: Geometric duality for convex vector optimization problems. J. Convex Anal. 20(3), 813–832 (2013)

    MathSciNet  MATH  Google Scholar 

  101. Heyde, F., Löhne, A.: Geometric duality in multiple objective linear programming. SIAM J. Optim. 19(2), 836–845 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  102. Heyde, F., Löhne, A.: Solution concepts in vector optimization: a fresh look at an old story. Optimization 60(12), 1421–1440 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  103. Heyde, F., Löhne, A., Tammer, C.: Set-valued duality theory for multiple objective linear programs and application to mathematical finance. Math. Methods Oper. Res. 69(1), 159–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  104. Heyde, F., Schrage, C.: Continuity concepts for set-valued functions and a fundamental duality formula for set-valued optimization. J. Math. Anal. Appl. 397(2), 772–784 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  105. Hu, R., Fang, Y.-P.: Set-valued increasing-along-rays maps and well-posed set-valued star-shaped optimization. J. Math. Anal. Appl. (2007)

    Google Scholar 

  106. Huang, X.X.: A new variant of Ekeland’s variational principle for set-valued maps. Optimization 52(1), 53–63 (2003)

    Google Scholar 

  107. Ide, J., Köbis, E.: Concepts of robustness for multi-objective optimization problems based on set order relations. Preprint #24, Georg-August-Universität Göttingen, Institut f. Numerische u. Angewandte Mathematik (2013)

    Google Scholar 

  108. Ide, J., Köbis, E., Kuroiwa, D., Schöbel, A., Tammer, C.: The relationship between multi-objective robustness concepts and set-valued optimization. Fixed Point Theory Appl. 83 (2014)

    Google Scholar 

  109. Ide, J., Schöbel, A.: Robustness for uncertain multi-objective optimization. Preprint #27, Georg-August-Universität Göttingen, Institut f. Numerische u. Angewandte Mathematik (2013)

    Google Scholar 

  110. Isermann, H.: Duality in multiple objective linear programming. In: Zionts, S. (ed.) Multiple Criteria Problem Solving, pp. 274–285, Springer, Berlin (1978)

    Google Scholar 

  111. Isermann, H.: On some relations between a dual pair of multiple objective linear programs. Zeitschrift für Oper. Res. 22(1), 33–41 (1978)

    MathSciNet  MATH  Google Scholar 

  112. Ivanov, E.H., Nehse, R.: Some results on dual vector optimization problems. Optimization 16(4), 505–517 (1985)

    Google Scholar 

  113. Jahn, J.: Duality in vector optimization. Math. Program. 25(3), 343–353 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  114. Jahn, J.: Vector Optimization. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  115. Jahn, J.: Vectorization in set optimization. J. Optim. Theory Appl. (2013). online first. doi:10.1007/s10957-013-0363-z

  116. Jahn, J.: A derivative-free descent method in set optimization. Comput. Optim. Appl. 60(2), 393–411 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  117. Jahn, J., Truong, X.D.H.: New order relations in set optimization. J. Optim. Theory Appl. 148(2), 209–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  118. Jahn, K.-U.: Maximale Fixpunkte von Intervallfunktionen. Computing 33(2), 141–151 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  119. Joe, H., Li, H.: Tail risk of multivariate regular variation. Methodol. Comput. Appl. Probab. 13(4), 671–693 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  120. Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Financ. Stoch. 8(4), 531–552 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  121. Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Financ. Stoch. 3(2), 237–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  122. Kannai, Y., Peleg, B.: A note to the extension of an order on a set to the power set. J. Econ. Theory 32, 172–175 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  123. Kawasaki, H.: Conjugate relations and weak subdifferentials of relations. Math. Oper. Res. 6(4), 593–607 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  124. Keimel, K., Roth, W.: Ordered Cones and Approximation. Lecture Notes in Mathematics, vol. 1517. Springer, Berlin (1992)

    MATH  Google Scholar 

  125. Klein, E., Thompson, A.: Theory of Correspondences. Wiley-Interscience, New York (1984)

    MATH  Google Scholar 

  126. Kolokoltsov, V.N.: On linear, additive, and homogeneous operators in idempotent analysis. In: Maslov, V.P., Samborskii, S.N. (eds.) Idempotent Analysis. Advances in Soviet Mathematics, vol. 13, pp. 87–101, American Mathematical Society (1992)

    Google Scholar 

  127. Kornbluth, J.S.H.: Duality, indifference and sensitivity analysis in multiple objective linear programming. Oper. Res. Q. 25(4), 599–614 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  128. Kuroiwa, D.: Convexity for set-valued maps. Appl. Math. Lett. 9(2), 97–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  129. Kuroiwa, D.: Some notions of convexity for set-valued maps and their relations. RIMS Kokyuroku 939, 168–172 (1996)

    MathSciNet  Google Scholar 

  130. Kuroiwa, D.: Some criteria in set-valued optimization. RIMS Kokyuroku 985, 171–176 (1997)

    MathSciNet  MATH  Google Scholar 

  131. Kuroiwa, D.: Lagrange duality of set-valued optimization with natural criteria. RIMS Kokyuroku 1068, 164–170 (1998)

    MathSciNet  MATH  Google Scholar 

  132. Kuroiwa, D.: On natural criteria in set-valued optimization. RIMS Kokyuroku 1048, 86–92 (1998)

    MathSciNet  MATH  Google Scholar 

  133. Kuroiwa, D.: The natural criteria in set-valued optimization. RIMS Kokyuroku 1031, 85–90 (1998)

    MathSciNet  MATH  Google Scholar 

  134. Kuroiwa, D.: Some duality theorems of set-valued optimization. RIMS Kokyuroku 1079, 15–19 (1999)

    MathSciNet  MATH  Google Scholar 

  135. Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  136. Kuroiwa, D.: Existence theorems of set optimization with set-valued maps. J. Inf. Optim. Sci. 24(1), 73–84 (2003)

    MathSciNet  MATH  Google Scholar 

  137. Kuroiwa, D.: On derivatives of set-valued maps and optimality conditions for set optimization. J. Nonlinear Convex Anal. 10(1), 41–50 (2009)

    MathSciNet  MATH  Google Scholar 

  138. Kuroiwa, D., Tanaka, T., Truong, X.D.H.: On cone convexity of set-valued maps. Nonlinear Anal. 30(3), 1487–1496 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  139. Kutateladze, S.S.: Convex operators. Russ. Math. Surv. 34(1), 181–214 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  140. Kuwano, I., Tanaka, T., Yamada, S.: Unified scalarization for sets and set-valued ky Fan minimax inequality. J. Nonlinear Convex Anal. 11, 1–13 (2010)

    Google Scholar 

  141. Lalitha, C.S., Dutta, J., Govil, M.G.: Optimality criteria in set-valued optimization. J. Aust. Math. Soc. 75(2), 221–231 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  142. Lechicki, A.A.: On bounded and subcontinuous multifunctions. Pac. J. Math. 75(1), 191–197 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  143. Li, S.J., Chen, C.R., Wu, S.-Y.: Conjugate dual problems in constrained set-valued optimization and applications. Eur. J. Oper. Res. 196(1), 21–32 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  144. Li, S.J., Sun, X.K., Liu, H.M., Yao, S.F., Teo, K.L.: Conjugate duality in constrained set-valued vector optimization problems. Numer. Funct. Anal. Optim. 32(1), 65–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  145. Li, Z.: The optimality conditions for vector optimization of set-valued maps. J. Math. Anal. Appl. 237(2), 413–424 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  146. Li, Z.-F., Chen, G.-Y.: Lagrangian multipliers, saddle points, and duality in vector optimization of set-valued maps. J. Math. Anal. Appl. 215(2), 297–316 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  147. Lin, L.-J.: Optimization of set-valued functions. J. Math. Anal. Appl. 186(1), 30–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  148. Liu, Y.M., Luo, M.K.: Lattice-valued mappings, completely distributive law and induced spaces. Fuzzy Sets Syst. 42(1), 43–56 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  149. Löhne, A.: Optimization with Set Relations. Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg (2005)

    Google Scholar 

  150. Löhne, A.: Optimization with set relations: conjugate duality. Optimization 54(3), 265–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  151. Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  152. Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios in markets with transaction costs. Int. J. Theory Appl. Finance. 17(2) (2014)

    Google Scholar 

  153. Löhne, A., Rudloff, B., Ulus, F.: Primal and dual approximation algorithms for convex vector optimization problems. J. Glob. Optim. 60(4), 713–736 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  154. Löhne, A., Schrage, C.: An algorithm to solve polyhedral convex set optimization problems. Optimization 62(1), 131–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  155. Löhne, A., Tammer, C.: A new approach to duality in vector optimization. Optimization 56(1–2), 221–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  156. Luc, D.T.: Theory of Vector Optimization. LNEMS, vol. 319. Springer, Berlin (1989)

    Google Scholar 

  157. Luc, D.T.: On duality in multiple objective linear programming. Eur. J. Oper. Res. 210(2), 158–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  158. Luc, D.T., Phong, T.Q., Volle, M.: Scalarizing functions for generating the weakly efficient solution set in convex multiobjective problems. SIAM. J. Optim. 15(4), 987–1001 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  159. Luc, D.T., Phong, T.Q., Volle, M.: A new duality approach to solving concave vector maximization problems. J. Glob. Optim. 36(3), 401–423 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  160. Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley & Sons (1968)

    Google Scholar 

  161. Luenberger, D.G.: Benefit functions and duality. J. Math. Econ. 21, 461–481 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  162. Luenberger, D.G.: New optimality principles for economic efficiency and equilibrium. J. Optim. Theory Appl. 75(2), 221–264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  163. Maeda, T.: On optimization problems with set-valued objective maps. Appl. Math. Comput. 217(3), 1150–1157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  164. Maeda, T.: On optimization problems with set-valued objective maps: existence and optimality. J. Optim. Theory Appl. 153(2), 263–279 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  165. Maggis, M., La Torre, D.: A goal programming model with satisfaction function for risk management and optimal portfolio diversification. INFOR: Inf. Syst. Oper. Res. 50(3), 117–126 (2012)

    MathSciNet  Google Scholar 

  166. Malivert, C.: Fenchel duality in vector optimization. Advances in Optimization (Lambrecht 1991). LNEMS, vol. 382, pp. 420–438. Springer, Berlin (1992)

    Chapter  Google Scholar 

  167. Martínez-Legaz, J.-E., Singer, I.: Dualities associated to binary operations on \({\rm {I\!R}}\). J. Convex Anal. 2(1–2), 185–209 (1995)

    MathSciNet  MATH  Google Scholar 

  168. Mayer, O.: Algebraische und metrische Strukturen in der Intervallrechnung und einige Anwendungen. Comput. (Arch. Elektron. Rechnen) 5, 144–162 (1970)

    Google Scholar 

  169. Minh, N.B., Tan, N.X.: On the \(C\)-lipschitz continuities and \(C\)-approximations of multivalued mappings. Vietnam J. Math. 30(4), 343–363 (2002)

    MathSciNet  MATH  Google Scholar 

  170. Minh, N.B., Tan, N.X.: On the continuity of vector convex multivalued functions. Acta Math. Vietnam. 27(1), 13–25 (2002)

    MathSciNet  MATH  Google Scholar 

  171. Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems. Soviet Math. Dokl. 22, 526–530 (1980)

    MATH  Google Scholar 

  172. Mordukhovich, B.S.: Coderivatives of set-valued mappings: calculus and applications. Nonlinear Anal. 30(5), 3059–3070 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  173. Mordukhovich, B.S., Bao, T.Q.: Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints. Appl. Math. 52(6), 453–472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  174. Mordukhovich, B.S., Bao, T.Q.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybern. 36(3), 531–562 (2007)

    MathSciNet  MATH  Google Scholar 

  175. Moreau, J.J.: Fonctions à valeurs dans \({-\infty ,+\infty }\): notions algebriques. Université de Montpellier, Seminaires de Mathematiques (1963)

    Google Scholar 

  176. Muselli, E.: Upper and lower semicontinuity for set-valued mappings involving constraints. J. Optim. Theory Appl. 106(3), 527–550 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  177. Nehring, K., Puppe, C.: Continuous extensions of an order on a set to the power set. J. Econ. Theory 68, 456–479 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  178. Nickel, K.: Verbandstheoretische Grundlagen der Intervall-Mathematik. Interval Mathematics, pp. 251–262. Springer, Berlin (1975)

    Google Scholar 

  179. Nieuwenhuis, J.W.: Supremal points and generalized duality. Math. Operationsforsch. Statist. Ser. Optim. 11(1), 41–59 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  180. Nishianidze, Z.G.: Fixed points of monotonic multiple-valued operators. Bull. Georgian Acad. Sci. (in Russian) 114, 489–491 (1984)

    Google Scholar 

  181. Nishizawa, S., Onodsuka, M., Tanaka, T.: Alternative theorems for set-valued maps based on a nonlinear scalarization. Pac. J. Optim. 1, 147–159 (2005)

    MathSciNet  MATH  Google Scholar 

  182. Nishizawa, S., Shimizu, A., Tanaka, T.: On nonlinear scalarization methods in set-valued optimization. RIMS Kôkyûroku 1415, 20–28 (2005)

    Google Scholar 

  183. Nishizawa, S., Shimizu, A., Tanaka, T.: Optimality conditions in set-valued optimization using nonlinear scalarization methods. In: Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 565–574. Yokohama Publishers, Yokohama (2007)

    Google Scholar 

  184. Oettli, W.: Optimality conditions involving generalized convex mappings. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 227–238. Academic Press Inc., New York (1981)

    Google Scholar 

  185. Oettli, W.: Optimality conditions for programming problems involving multivalued mappings. Mod. Appl. Math., 195–226, Amsterdam (1982)

    Google Scholar 

  186. Olko, J.: Selections of an iteration semigroup of linear set-valued functions. Aequ. Math. 56(1–2), 157–168 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  187. Pennanen, T., Penner, I.: Hedging of claims with physical delivery under convex transaction costs. SIAM J. Financ. Math. 1(1), 158–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  188. Pollák, G.: Infima in the power set of free semigroups. Semigroups Theory and Applications, pp. 281–286. Springer, Berlin (1988)

    Chapter  Google Scholar 

  189. Pontrjagin, L.S.: Linear differential pursuit games. Mat. Sb. (N.S.), 112(154)(3(7)) 307–330, 475 (1980)

    Google Scholar 

  190. Postolică, V.: A generalization of Fenchel’s duality theorem. Ann. Sci. Math. Québec 10(2), 199–206 (1986)

    MathSciNet  MATH  Google Scholar 

  191. Postolică, V.: Vectorial optimization programs with multifunctions and duality. Ann. Sci. Math. Québec 10(1), 85–102 (1986)

    MathSciNet  MATH  Google Scholar 

  192. Prakash, P., Sertel, M.R.: Topological semivector spaces: convexity and fixed point theory. Semigroup Forum, 9(2): 117–138 (1974/75)

    Google Scholar 

  193. Prakash, P., Sertel, M.R.: Hyperspaces of topological vector spaces: their embedding in topological vector spaces. Proc. AMS 61(1), 163–168 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  194. Pshenichnyi, B.N.: Convex multivalued mappings and their conjugates. Cybern. Syst. Anal. 8(3), 453–464 (1972)

    Article  MathSciNet  Google Scholar 

  195. Rockafellar, R.T.: Monotone Processes of Convex and Concave Type. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

  196. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2), 183–238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  197. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    MATH  Google Scholar 

  198. Rödder, W.: A generalized saddlepoint theory: Its application to duality theory for linear vector optimum problems. Eur. J. Oper. Res. 1(1), 55–59 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  199. Rodríguez-Marín, L., Sama, M.: Scalar Lagrange multiplier rules for set-valued problems in infinite-dimensional spaces. J. Optim. Theory Appl. 156(3), 683–700 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  200. Roux, A., Tokarz, K., Zastawniak, T.: Options under proportional transaction costs: An algorithmic approach to pricing and hedging. Acta Applicandae Mathematicae 103(2), 201–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  201. Roux, A., Zastawniak, T.: American and Bermudan options in currency markets under proportional transaction costs. Acta Appl. Math. (2015). doi:10.1007/s10440-015-0010-9

  202. Rubinov, A.M.: Sublinear operators and their applications. Rus. Math. Surv. 32(4), 115–175 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  203. Sach, P.H.: New generalized convexity notion for set-valued maps and application to vector optimization. J. Optim. Theory Appl. 125(1), 157–179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  204. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization, vol. 176. Academic Press, New York (1985)

    MATH  Google Scholar 

  205. Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Financ. 14(1), 19–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  206. Schmidt, K.D.: Embedding theorems for cones and applications to classes of convex sets occurring in interval mathematics. Interval Mathematics. Lecture Notes in Computer Science, vol. 212, pp. 159–173. Springer, Berlin (1986)

    Google Scholar 

  207. Schrage, C.: Set-valued Convex Analysis. Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg (2009)

    Google Scholar 

  208. Schrage, C.: Scalar representation and conjugation of set-valued functions. Optim. 64(2), 197–223 (2015)

    Google Scholar 

  209. Shephard, R.W.: Theory of Cost and Production Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  210. Singer, I.: Abstract Convex Analysis. Wiley, New York (1997)

    MATH  Google Scholar 

  211. Song, W.: Duality for vector optimization of set-valued functions. J. Math. Anal. Appl. 201(1), 212–225 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  212. Song, W.: Conjugate duality in set-valued vector optimization. J. Math. Anal. Appl. 216(1), 265–283 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  213. Song, W.: Lagrangian duality for minimization of nonconvex multifunctions. J. Optim. Theory Appl. 93(1), 167–182 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  214. Song, W.: Duality in set-valued optimization. Dissertationes Mathematicae (Rozprawy Mat.) 375, 1–69 (1998)

    Google Scholar 

  215. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundamenta Mathematicae 16(1), 386–389 (1930)

    MATH  Google Scholar 

  216. Tanino, T.: On supremum of a set in a multidimensional space. J. Math. Anal. Appl. 130(2), 386–397 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  217. Tanino, T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167(1), 84–97 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  218. Tanino, T., Sawaragi, Y.: Duality theory in multiobjective programming. J. Optim. Theory Appl. 27(4), 509–529 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  219. Tanino, T., Sawaragi, Y.: Conjugate maps and duality in multiobjective optimization. J. Optim. Theory Appl. 31(4), 473–499 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  220. Volle, M.: Concave duality: application to problems dealing with difference of functions. Math. Program. 41(1–3), 261–278 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  221. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Monographs on Statistics and Applied Probability, vol. 42. Chapman and Hall Ltd., London (1991)

    Book  MATH  Google Scholar 

  222. Wang, S.S., Young, V.R., Panjer, H.H.: Axiomatic characterization of insurance prices. Insur. Math. Econ. 21(2), 173–183 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  223. Ward, M.: Some arithmetical applications of residuation. Am. J. Math. 59(4), 921–926 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  224. Ward, M., Dilworth, R.P.: Residuated lattices. Proc. Natl. Acad. Sci. 24(3), 162 (1938)

    Article  MATH  Google Scholar 

  225. Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Am. Math. Soc. 45(3), 335–354 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  226. Yang, X.Q.: A Hahn-Banach theorem in ordered linear spaces and its applications. Optimization 25(1), 1–9 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  227. Yang, X.Q.: Directional derivatives for set-valued mappings and applications. Math. Methods Oper. Res. 48(2), 273–285 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  228. Young, R.C.: The algebra of many-valued quantities. Math. Ann. 104, 260–290 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  229. Zhang, W.Y., Li, S.J., Teo, K.L.: Well-posedness for set optimization problems. Nonlinear Anal. 71(9), 3769–3778 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  230. Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures. Annals of Discrete Mathematics, vol. 10. North-Holland Publishing Co., New York (1981)

    MATH  Google Scholar 

  231. Zowe, J.: Subdifferentiability of convex functions with values in an ordered vector space. Math. Scand. 34(1), 69–83 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  232. Zowe, J.: A duality theorem for a convex programming problem in order complete vector lattices. J. Math. Anal. Appl. 50(2), 273–287 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  233. Zowe, J.: Sandwich theorems for convex operators with values in an ordered vector space. J. Math. Anal. Appl. 66(2), 282–296 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  234. Zălinescu, C.: Duality for vectorial nonconvex optimization by convexification and applications. An. Stiint. Univ. Al. I. Cuza Iasi. Sect. I a Mat.(NS), 39(1), 16–34 (1983)

    Google Scholar 

  235. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  236. Zălinescu, C.: Hahn-Banach extension theorems for multifunctions revisited. Math. Methods Oper. Res. 68(3), 493–508 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Andreas H. Hamel gratefully acknowledges the support of Free University of Bozen-Bolzano via a generous start-up grant through the academic years 2013/14 and 2014/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Hamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamel, A.H., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (2015). Set Optimization—A Rather Short Introduction. In: Hamel, A., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds) Set Optimization and Applications - The State of the Art. Springer Proceedings in Mathematics & Statistics, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48670-2_3

Download citation

Publish with us

Policies and ethics