Skip to main content

Distributed Large Independent Sets in One Round on Bounded-Independence Graphs

  • Conference paper
  • First Online:
Distributed Computing (DISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9363))

Included in the following conference series:

Abstract

We present a randomized one-round, single-bit messages, distributed algorithm for the maximum independent set problem in polynomially bounded-independence graphs with poly-logarithmic approximation factor. Bounded-independence graphs capture various models of wireless networks such as the unit disc graphs model and the quasi unit disc graphs model. For instance, on unit disc graphs, our achieved approximation ratio is \(\mathrm {O}( (\frac{\log n}{\log \log n})^2)\).

A starting point of our work is an extension of Turán’s bound for independent sets by Caro and Wei which states that every graph \(G=(V,E)\) contains an independent set of size at least \(\beta (G) := \sum _{v \in V} \frac{1}{\deg _G(v) + 1}\), where \(\deg _G(v)\) denotes the degree of v in G. Alon and Spencer’s proof of the Caro-Wei bound in [1] suggests a randomized distributed one-round algorithm that outputs an independent set of expected size equal to \(\beta (G)\), using messages of sizes \(\mathrm {O}(\log n)\), where n is the number of vertices of the input graph. To achieve our main result, we show that \(\beta (G)\) gives poly-logarithmic approximation ratios for polynomially bounded-independence graphs. Then, for \(\mathrm {O}(1)\)-claw free graphs (which include graphs of bounded-independence), we show that using a different algorithm, an independent set of expected size \(\varTheta (\beta (G))\) can be computed in one round using single bit messages, thus reducing the communication cost to an absolute minimum.

Last, in general graphs, \(\beta (G)\) may only give an \(\varOmega (n)\)-approximation. We show, however, that this is best possible for one-round algorithms: We show that each such distributed algorithm (possibly randomized) has an approximation ratio of \(\varOmega (n)\) on general graphs.

Supported by Icelandic Research Fund grants 120032011 and 152679-051.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Spencer, J.H.: The probabilistic method. John Wiley & Sons (2004)

    Google Scholar 

  2. Barenboim, L.: On the locality of some NP-complete problems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 403–415. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Caro, Y.: New results on the independence number. Tech. rep., Tel Aviv University (1979)

    Google Scholar 

  4. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010). http://dl.acm.org/citation.cfm?id=1888781.1888802

    Chapter  Google Scholar 

  5. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming algorithms for independent sets. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 641–652. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Halldórsson, M.M.: Wireless scheduling with power control. ACM Trans. Algorithms 9(1), 7:1–7:20 (2012)

    Article  Google Scholar 

  8. Halldórsson, M.M., Konrad, C.: Distributed algorithms for coloring interval graphs. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 454–468. Springer, Heidelberg (2014)

    Google Scholar 

  9. Halldórsson, M.M., Mitra, P.: Nearly optimal bounds for distributed wireless scheduling in the SINR model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011). http://dl.acm.org/citation.cfm?id=2027223.2027287

    Chapter  Google Scholar 

  10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  11. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010). http://dl.acm.org/citation.cfm?id=1888781.1888803

    Chapter  Google Scholar 

  12. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proceedings of the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC 2004, pp. 300–309. ACM, New York (2004)

    Google Scholar 

  13. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: Proceedings of the 2003 Joint Workshop on Foundations of Mobile Computing, DIALM-POMC 2003, pp. 69–78. ACM, New York (2003)

    Google Scholar 

  14. Laurinharju, J., Suomela, J.: Brief announcement: Linial’s lower bound made easy. In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC 2014, pp. 377–378. ACM, New York (2014)

    Google Scholar 

  15. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 1885, pp. 1–10. ACM, New York (1985)

    Google Scholar 

  17. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rubinfeld, R.: Sublinear time algorithms. In: Proceedings of the International Congress of Mathematicians (2006)

    Google Scholar 

  19. Schneider, J., Wattenhofer, R.: An Optimal Maximal Independent Set Algorithm for Bounded-Independence Graphs. Distributed Computing 22, March 2010

    Google Scholar 

  20. Wei, V.: A lower bound on the stability number of a simple graph. Tech. rep., Bell Laboratories (1981)

    Google Scholar 

  21. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 681–690. ACM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Konrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halldórsson, M.M., Konrad, C. (2015). Distributed Large Independent Sets in One Round on Bounded-Independence Graphs. In: Moses, Y. (eds) Distributed Computing. DISC 2015. Lecture Notes in Computer Science(), vol 9363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48653-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48653-5_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48652-8

  • Online ISBN: 978-3-662-48653-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics