Skip to main content

Free-Weighting Matrix Method for Delay Compensation of Wide-Area Signals

  • Chapter
  • First Online:
Interconnected Power Systems

Part of the book series: Power Systems ((POWSYS))

  • 1040 Accesses

Abstract

In this chapter, in order to improve the power system damping and robustness for the FACTS device, a free-weighting matrices (FWMs) approach-based Lyapunov functional stability theory is proposed to design the FACTS-WADC, which can consider efficiently the effect of signal delay on the control performance. The FWMs approach will be described and the detailed nonlinear simulations on two typical test systems will be performed to evaluate the performance of the proposed SVC-type FACTS-WADC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu HX, Tsakalis KS, Heydt GT (2004) Evaluation of time delay effects to wide-area power system stabilizer design. IEEE Trans Power Syst 19(4):1935–1941

    Article  Google Scholar 

  2. Stahlhut JW, Browne TJ, Heydt GT, Vittal V (2008) Latency viewed as a stochastic process and its impact on wide area power system control signals. IEEE Trans Power Syst 23(1):84–91

    Article  Google Scholar 

  3. Dotta D, Silva AS, Decker IC (2009) Wide-area measurement-based two-level control design considering signals transmission delay. IEEE Trans Power Syst 24(1):208–216

    Google Scholar 

  4. Majumder R, Pal BC, Dufour C, Korba P (2006) Design and real-time implementation of robust FACTS controller for damping inter-area oscillation. IEEE Trans Power Syst 21(2):809–816

    Article  Google Scholar 

  5. Majumder R, Chaudhuri B, Pal BC (2005) A probabilistic approach to model-based adaptive control for damping of interarea oscillations. IEEE Trans Power Syst 20(1):367–374

    Article  Google Scholar 

  6. Chaudhuri B, Pal BC (2004) Robust damping of multiple swing modes employing global stabilizing signals with a TCSC. IEEE Trans Power Syst 19(1):499–506

    Article  MathSciNet  Google Scholar 

  7. Chaudhuri NR, Ray S, Majumder R, Chaudhuri B (2010) A new approach to continuous latency compensation with adaptive phasor power oscillation damping controller (POD). IEEE Trans Power Syst 25(2):939–946

    Article  Google Scholar 

  8. Xie XR, Xin YZ, Xiao JY, Wu JT, Han YD (2006) WAMS applications in Chinese power systems. IEEE Power Energy Mag 4(1):54–63

    Article  Google Scholar 

  9. Kamwa I, Grondin R, Hebert Y (2001) Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach. IEEE Trans Power Syst 16(1):136–153

    Article  Google Scholar 

  10. He J, Lu C, Jin X, Li P (2008) Analysis of time delay effects on wide area damping control. In: IEEE Asia Pacific conference on circuits and systems

    Google Scholar 

  11. Savelli DC, Pellanda PC, Martins N, Macedo NJP, Barbosa AA, Luz GS (2007) Robust signals for the TCSC oscillation damping controllers of the Brazilian north–south interconnection considering multiple power flow scenarios and external disturbances. In: IEEE power engineering society general meeting

    Google Scholar 

  12. Grunbaum R, de Grijp M, Moshi V (2009) Enabling long distance AC power transmission by means of FACTS. AFRICON, Sept 2009

    Google Scholar 

  13. Chaudhuri NR, Ray S, Majumder R, Chaudhuri B (2009) A case study on challenges for robust wide-area phasor POD. In: IEEE power & energy society general meeting

    Google Scholar 

  14. Korba P, Larsson M, Chaudhuri B, Pal B, Majumder R, Sadikovic R, Andersson G (2007) Towards real-time implementation of adaptive damping controllers for FACTS devices. In: IEEE power engineering society general meeting

    Google Scholar 

  15. Zarghami M, Crow ML, Jagannathan S (2010) Nonlinear control of FACTS controllers for damping interarea oscillations in power systems. IEEE Trans Power Deliv 25(4):3113–3121

    Article  Google Scholar 

  16. Gu K (1997) Discretized LMI set in the stability problem for linear uncertain time-delay systems. Int J Control 68(4):923–934

    Article  MATH  Google Scholar 

  17. Gu K (1999) A generalized discretization scheme of Lyapunov functional in the stability problem of linear uncertain time-delay systems. Int J Robust Nonlinear Control 9(1):1–4

    Article  MATH  Google Scholar 

  18. Gu K (2001) A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. Int J Control 74(10):967–976

    Article  MATH  Google Scholar 

  19. Fridman E, Shaked U (2003) Delay-dependent stability and H∞ control: constant and time-varying delays. Int J Control 76(1):48–60

    Article  MATH  MathSciNet  Google Scholar 

  20. Fridman E, Shaked U (2002) On delay-dependent passivity. IEEE Trans Autom Control 47(4):664–669

    Article  MathSciNet  Google Scholar 

  21. Gao H, Wang C (2003) Comments and further results on ‘a descriptor system approach to H1 control of linear time-delay systems’. IEEE Trans Autom Control 48(3):520–525

    Google Scholar 

  22. Han QL (2003) Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays. IMA J Math Control Inf 20(4):371–386

    Google Scholar 

  23. Liu F, Wu M, He Y, Zhou YC, Yokoyama R (2010) Delay-dependent robust stability analysis for interval neural networks with time-varying delay. IEEJ, accepted, 2010

    Google Scholar 

  24. Liu F, Wu M, He Y, Zhou YC, Yokoyama R (2008) New delay-dependent stability criteria for T-S fuzzy systems with a time-varying delay. In: Proceedings of the 17th world congress, the international federation of automatic control. Seoul, Korea

    Google Scholar 

  25. Liu F, Wu M, He Y, Zhou YC, Yokoyama R (2008). New delay-dependent stability analysis and stabilizing design for T-S fuzzy systems with a time-varying delay. In: 27th Chinese control conference. Kunming, China

    Google Scholar 

  26. Jiang QY, Zou ZY, Cao YJ (2005) Wide-area TCSC controller design in consideration of feedback signals’ time delays. In: IEEE power engineering society general meeting

    Google Scholar 

  27. Kundur P (1994) Power stability and control. McGraw-Hill, New York

    Google Scholar 

  28. Rogers G (1999) Power System oscillations. Kluwer, Norwell

    Google Scholar 

  29. Gao H, Lam J, Wang C, Wang Y (2004) Delay-dependent output-feedback stabilization of discrete-time systems with time-varying state delay. IEEE Proc Control Theor Appl 151(6):691–698

    Article  MathSciNet  Google Scholar 

  30. El Ghaoui L, Oustry F, AitRami M (1997) A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans Autom Control 42(8):1171–1176

    Article  MATH  Google Scholar 

  31. Chilali M, Gahinet P, Apkarian P (1999) Robust pole placement in LMI regions. IEEE Trans Autom Control 44(12):2257–2270 (Chap. 4 references)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Y., Yang, D., Liu, F., Cao, Y., Rehtanz, C. (2016). Free-Weighting Matrix Method for Delay Compensation of Wide-Area Signals. In: Interconnected Power Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48627-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48627-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48625-2

  • Online ISBN: 978-3-662-48627-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics