Skip to main content

Genetic Counseling for Childhood Tumors and Inherited Cancer-Predisposing Syndromes

  • Chapter
  • First Online:
The Surgery of Childhood Tumors

Abstract

In this chapter, the general principles regarding the genetic causes of childhood tumors are discussed. In addition, the main features of the more common genetic syndromes associated with childhood tumors are described, together with an outline of the underlying molecular mechanisms. Point mutations and also larger, chromosomal, changes are described. Practical advice is given for genetic counseling in general and more specific advice is provided for many of the syndromes. Details of helpful online sources of the latest information regarding cancer-related syndromes are given. Furthermore, to facilitate rapid access to such information, a freely accessible website is provided by the author, at www.essentialmedgen.com, that acts as a guide and portal to 70 international online resources, categorized according to content. Each internet resource contains detailed, up-to-date information regarding clinical details, testing laboratories, genes, proteins, analysis tools or patient support groups. Such information will provide a useful supplement to that contained herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aman P, Panagopoulos I, Lassen C, et al. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics. 1996;37:1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Janknecht R. EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene. 2005;363:1–14.

    Article  CAS  PubMed  Google Scholar 

  3. Caron H, van Sluis P, van Hoeve M, et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nat Genet. 1993;4:187–90.

    Article  CAS  PubMed  Google Scholar 

  4. Simi L, Sestini R, Ferruzzi P, et al. Phenotype variability of neural crest derived tumours in six Italian families segregating the same founder SDHD mutation Q109X. J Med Genet. 2005;42, e52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tobias ES, Connor M, Ferguson-Smith M. Essential medical genetics. 6th ed. Oxford: Wiley-Blackwell; 2011.

    Google Scholar 

  6. Harper PS. Practical genetic counselling. 7th ed. London: Hodder-Arnold; 2010.

    Google Scholar 

  7. Hodgson SV, Foulkes WD, Eng C, Maher ER. A practical guide to human cancer genetics. 4th ed. Berlin: Springer; 2013.

    Google Scholar 

  8. Tobias ES. The molecular biology of cancer. In: Emery & Rimoin’s principles & practice of medical genetics. 6th ed. Edinburgh: Churchill Livingstone; 2013.

    Google Scholar 

  9. Gilchrist DM, Savard ML. Ependymomas in two sisters and a maternal male cousin. Am J Hum Genet. 1989;45:A22.

    Google Scholar 

  10. Yokota T, Tachizawa T, Fukino K, et al. A family with spinal anaplastic ependymoma: evidence of loss of chromosome 22q in tumor. J Hum Genet. 2003;48:598–602.

    Article  CAS  PubMed  Google Scholar 

  11. Vieregge P, Gerhard L, Nahser HC. Familial glioma: occurrence within the “familial cancer syndrome” and systemic malformations. J Neurol. 1987;234:220–32.

    Article  CAS  PubMed  Google Scholar 

  12. Hirschman BA, Pollock BH, Tomlinson GE. The spectrum of APC mutations in children with hepatoblastoma from familial adenomatous polyposis kindreds. J Pediatr. 2005;147:263–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hartley AL, Birch JM, Kelsey AM, et al. Epidemiological and familial aspects of hepatoblastoma. Med Paediatr Oncol. 1990;18:103–9.

    Article  CAS  Google Scholar 

  14. Nagata T, Nakamura M, Shichino H, et al. Cytogenetic abnormalities in hepatoblastoma: report of two new cases and review of the literature suggesting imbalance of chromosomal regions on chromosomes 1, 4, and 12. Cancer Genet Cytogenet. 2005;156:8–13.

    Article  CAS  PubMed  Google Scholar 

  15. Mack TM, Cozen W, Shibata DK, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young adult form of the disease. N Engl J Med. 1995;332:413–8.

    Article  CAS  PubMed  Google Scholar 

  16. Goldin LR, McMaster ML, Ter-Minassian M, et al. A genome screen of families at high risk for Hodgkin lymphoma: evidence for a susceptibility gene on chromosome 4. J Med Genet. 2005;42:595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scuoppo C, Miething C, Lindqvist L, Reyes J, Ruse C, Appelmann I, Yoon S, Krasnitz A, Teruya-Feldstein J, Pappin D, Pelletier J, Lowe SW. A tumour suppressor network relying on the polyamine-hypusine axis. Nature. 2012;487(7406):244–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hung KL, Wu CM, Huang JS, How SW. Familial medulloblastoma in siblings: report of one family and review of the literature. Surg Neurol. 1990;33:341–6.

    Article  CAS  PubMed  Google Scholar 

  19. Brugières L, Remenieras A, Pierron G, Varlet P, Forget S, Byrde V, Bombled J, Puget S, Caron O, Dufour C, Delattre O, Bressac-de Paillerets B, Grill J. High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age. J Clin Oncol. 2012;30(17):2087–93.

    Article  PubMed  Google Scholar 

  20. Aavikko M, Li S-P, Saarinen S, Alhopuro P, Kaasinen E, Morgunova E, Li Y, Vesanen K, Smith MJ, Evans DGR, Poyhonen M, Kiuru A, Auvinen A, Aaltonen LA, Taipale J, Vahteristo P. Loss of SUFU function in familial multiple meningioma. Am J Hum Genet. 2012;91:520–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amlashi SF, Riffaud L, Brassier G, Morandi X. Nevoid basal cell carcinoma syndrome: relation with desmoplastic medulloblastoma in infancy. A population-based study and review of the literature. Cancer. 2003;98:618–24.

    Article  PubMed  Google Scholar 

  22. De Vos M, Hayward BE, Picton S, et al. Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet. 2004;74:954–64.

    Article  PubMed  PubMed Central  Google Scholar 

  23. De Vos M, Hayward BE, Charlton R, et al. PMS2 mutations in childhood cancer. J Natl Cancer Inst. 2006;98:358–61.

    Article  PubMed  Google Scholar 

  24. Kushner BH, Gilbert F, Helson L. Familial neuroblastoma: case reports, literature review and etiologic considerations. Cancer. 1986;57:1887–93.

    Article  CAS  PubMed  Google Scholar 

  25. O’Riordain DS, O’Connell PR, Kirwan WO. Hereditary sacral agenesis with presacral mass and anorectal stenosis: the Currarino triad. Br J Surg. 1991;78:536–8.

    Article  PubMed  Google Scholar 

  26. Lynch SA, Bond P, Copp AJ, et al. A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nat Genet. 1995;11:93–5.

    Article  CAS  PubMed  Google Scholar 

  27. Cretolle C, Zerah M, Jaubert F, et al. New clinical and therapeutic perspectives in Currarino syndrome (study of 29 cases). J Pediatr Surg. 2006;41:126–31; discussion 126–31.

    Article  PubMed  Google Scholar 

  28. Simon A, Ohel G, Neri A, Schenker JG. Familial occurrence of mature ovarian teratomas. Obstet Gynecol. 1985;66:278–9.

    CAS  PubMed  Google Scholar 

  29. Gorlin RJ, Cohen Jr MM, Condon LM, Burke BA. Bannayan-Riley-Ruvalcaba syndrome. Am J Med Genet. 1992;44:307–14.

    Article  CAS  PubMed  Google Scholar 

  30. Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene. 2004;23:6445–70.

    Article  CAS  PubMed  Google Scholar 

  31. Mester J, Eng C. When overgrowth bumps into cancer: the PTENopathies. Am J Med Genet C Semin Med Genet. 2013;163C:114–21.

    Article  PubMed  Google Scholar 

  32. Pilarski R, Eng C. Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J Med Genet. 2004;41:323–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hatada I, Ohashi H, Fukushima Y, et al. An imprinted gene p57(KIP2) is mutated in Beckwith-Wiedemann syndrome. Nature. 1996;14:171–3.

    CAS  Google Scholar 

  34. Choufani S, Shuman C, Weksberg R. Molecular findings in Beckwith–Wiedemann syndrome. Am J Med Genet C Semin Med Genet. 2013;163C:131–40.

    Article  PubMed  Google Scholar 

  35. Mueller RF. The Denys-Drash syndrome. J Med Genet. 1994;31:471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Little S, Hanks S, King-Underwood L, et al. A WT1 exon 1 mutation in a child diagnosed with Denys-Drash syndrome. Pediatr Nephrol. 2005;20:81–5.

    Article  PubMed  Google Scholar 

  37. Plazzer JP, Sijmons RH, Woods MO, Peltomäki P, Thompson B, Den Dunnen JT, Macrae F. The InSiGHT database: utilizing 100 years of insights into Lynch Syndrome. Fam Cancer. 2013;12:175–80]

    Google Scholar 

  38. Wicking C, Shanley S, Smyth I, et al. Most germ-line mutations in the nevoid basal cell carcinoma syndrome lead to a premature termination of the PATCHED protein, and no genotype-phenotype correlations are evident. Am J Hum Genet. 1997;60:21–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans DGR, Ladusans EJ, Rimmer S, et al. Complications of the naevoid basal cell carcinoma syndrome: results of a population based study. J Med Genet. 1993;30:460–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frebourg T, Barbier N, Yan Y, et al. Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome. Am J Hum Genet. 1995;56:608–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moule RN, Jhavar SG, Eeles RA. Genotype phenotype correlation in Li-Fraumeni syndrome kindreds and its implications for management. Fam Cancer. 2006;5:129–33.

    Article  CAS  PubMed  Google Scholar 

  42. Varley JM. Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat. 2003;21:313–20.

    Article  CAS  PubMed  Google Scholar 

  43. Barlow JW, Mous M, Wiley JC, et al. Germ line BAX alterations are infrequent in Li-Fraumeni syndrome. Cancer Epidemiol Biomarkers Prev. 2004;13:1403–6.

    CAS  PubMed  Google Scholar 

  44. Taconis WK. Osteosarcoma in fibrous dysplasia. Skeletal Radiol. 1988;17:163–70.

    Article  CAS  PubMed  Google Scholar 

  45. Metzler M, Luedecke DK, Saeger W, et al. Low prevalence of Gs alpha mutations in somatotroph adenomas of children and adolescents. Cancer Genet Cytogenet. 2006;166:146–51.

    Article  CAS  PubMed  Google Scholar 

  46. Christman JE, Ballon SC. Ovarian fibrosarcoma associated with Maffucci’s syndrome. Gynecol Oncol. 1990;37:290–1.

    Article  CAS  PubMed  Google Scholar 

  47. Hopyan S, Gokgoz N, Poon R, et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet. 2002;30:306–10.

    Article  PubMed  Google Scholar 

  48. Rozeman LB, Sangiorgi L, Briaire-de Bruijn IH, et al. Enchondromatosis (Ollier disease, Maffucci syndrome) is not caused by the PTHR1 mutation p.R150C. Hum Mutat. 2004;24:466–73.

    Article  CAS  PubMed  Google Scholar 

  49. Blanton SH, Hogue D, Wagner M, et al. Hereditary multiple exostoses: confirmation of linkage to chromosomes 8 and 11. Am J Med Genet. 1996;62:150–9.

    Article  CAS  PubMed  Google Scholar 

  50. Ciavarella M, Coco M, Baorda F, Stanziale P, Chetta M, Bisceglia L, Palumbo P, Bengala M, Raiteri P, Silengo M, Caldarini C, Facchini R, Lala R, Cavaliere ML, De Brasi D, Pasini B, Zelante L, Guarnieri V, D’Agruma L. 20 novel point mutations and one large deletion in EXT1 and EXT2 genes: report of diagnostic screening in a large Italian cohort of patients affected by hereditary multiple exostosis. Gene. 2013;515(2):339–48.

    Article  CAS  PubMed  Google Scholar 

  51. Wicklund CL, Pauli RM, Johnston D, Hecht JT. Natural history study of hereditary multiple exostoses. Am J Med Genet. 1995;55:43–6.

    Article  CAS  PubMed  Google Scholar 

  52. Vaccaro M, Guarneri C, Blandino A. Trichorhinophalangeal syndrome. J Am Acad Dermatol. 2005;53:858–60.

    Article  PubMed  Google Scholar 

  53. Cheadle JP, Sampson JR. Exposing the MYtH about base excision repair and human inherited disease. Hum Mol Genet. 2003;12:R159–65.

    Article  CAS  PubMed  Google Scholar 

  54. Sampson JR, Dolwani S, Jones S, et al. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet. 2003;362:39–41.

    Article  CAS  PubMed  Google Scholar 

  55. Sieber OM, Lipton L, Crabtree M, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348:791–9.

    Article  PubMed  Google Scholar 

  56. Arun D, Gutmann DH. Recent advances in neurofibromatosis type 1. Curr Opin Neurol. 2004;17:101–5.

    Article  CAS  PubMed  Google Scholar 

  57. Castle B, Baser ME, Huson SM, et al. Evaluation of genotype-phenotype correlations in neurofibromatosis type 1. J Med Genet. 2003;40, e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Raedt T, Brems H, Wolkenstein P, et al. Elevated risk for MPNST in NF1 microdeletion patients. Am J Hum Genet. 2003;72:1288–92.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Evans DG, Baser ME, O’Reilly B, et al. Management of the patient and family with neurofibromatosis 2: a consensus conference statement. Br J Neurosurg. 2005;19:5–12.

    Article  CAS  PubMed  Google Scholar 

  60. Greenberg F, Copeland K, Gresik MV. Expanding the spectrum of the Perlman syndrome. Am J Med Genet. 1988;29:773–6.

    Article  CAS  PubMed  Google Scholar 

  61. Petkovic M, Dietschy T, Freire R, et al. The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci. 2005;118:4261–9.

    Article  CAS  PubMed  Google Scholar 

  62. Larizza L, Magnani I, Roversi G. Rothmund-Thomson syndrome and RECQL4 defect: splitting and lumping. Cancer Lett. 2006;232:107–20.

    Article  CAS  PubMed  Google Scholar 

  63. Lindor NM, Devries EMG, Michels VV, et al. Rothmund-Thomson syndrome in siblings: evidence for acquired in vivo mosaicism. Clin Genet. 1996;49:124–9.

    Article  CAS  PubMed  Google Scholar 

  64. Yoneda Y, Saitsu H, Touyama M, Makita Y, Miyamoto A, Hamada K, Kurotaki N, Tomita H, Nishiyama K, Tsurusaki Y, Doi H, Miyake N, Ogata K, Naritomi K, Matsumoto N. Missense mutations in the DNA-binding/dimerization domain of NFIX cause Sotos-like features. J Hum Genet. 2012;57(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  65. Cole TRP, Hughes HE. Sotos syndrome: a study of the diagnostic criteria and natural history. J Med Genet. 1994;31:20–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tatton-Brown K, Rahman N. Clinical features of NSD1-positive Sotos syndrome. Clin Dysmorphol. 2004;13:199–204.

    Article  PubMed  Google Scholar 

  67. Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet. 2013;132(4):359–83.

    Article  CAS  PubMed  Google Scholar 

  68. Lewis JC, Thomas HV, Murphy KC, Sampson JR. Genotype and psychological phenotype in tuberous sclerosis. J Med Genet. 2004;41:203–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sancak O, Nellist M, Goedbloed M, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet. 2005;13:731–41.

    Article  CAS  PubMed  Google Scholar 

  70. Krueger DA, Care MM, Agricola K, Tudor C, Mays M, Franz DN. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology. 2013;80(6):574–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Knudson AG. All in the (cancer) family. Nat Genet. 1993;5:103–4.

    Article  CAS  PubMed  Google Scholar 

  72. Low G, Irwin GJ, Haddock G, Maroo SV. Currarino triad: characteristic appearances on magnetic resonance imaging and plain radiography. Australas Radiol. 2006;50:249–51.

    Article  CAS  PubMed  Google Scholar 

Websites

  • http://ghr.nlm.nih.gov/. Genetics Home Reference. A large database (based in the USA) of “consumer-friendly” information relating to genetic conditions for families.

  • http://www.cafamily.org.uk/medical-information/conditions/. The UK-based Contact-A-Family directory of conditions. Provides contact details and brief clinical summaries, again designed to be “consumer-friendly” and suitable for families with a child affected by a genetic condition.

  • www.essentialmedgen.com. A website with unrestricted access, originally established to accompany the author’s textbooks, Essential medical genetics (6th edition, 2011) (ref 5 above) and Medical Genetics for the MRCOG and Beyond (2nd edition, 2014). This website provides direct web-links to 70 selected worldwide genetics databases, all categorized for ease of use with straightforward guidance relating to their main purposes. It also contains brief summaries, by the author, of updates and new findings in the field of medical genetics.

  • www.ncbi.nlm.nih.gov/omim. A comprehensive catalogue of genetic disorders (particularly those with a Mendelian inheritance pattern i.e. “single-gene disorders”).

  • www.ncbi.nlm.nih.gov/sites/GeneTests/review?db=GeneTests. A database of generally comprehensive and fairly recently updated reviews on individual genetic syndromes, many of which are tumor-related.

  • http://insight-group.org/variants/database/. The colon cancer gene mutation database, accessible via the website of the International Society for Gastrointestinal Hereditary Tumours (InSiGHT).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward S. Tobias BSc, MBChB, PhD, FRCP, FHEA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tobias, E.S. (2016). Genetic Counseling for Childhood Tumors and Inherited Cancer-Predisposing Syndromes. In: Carachi, R., Grosfeld, J. (eds) The Surgery of Childhood Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48590-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48590-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48588-0

  • Online ISBN: 978-3-662-48590-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics