Skip to main content

Long-Term Effects of Childhood Cancer Therapy on Growth and Fertility

  • Chapter
  • First Online:
  • 1375 Accesses

Abstract

Survival rates for most childhood malignancies have improved remarkably over the past decade with an overall survival rate for England and Wales for children less than 15 years of age quoted as 75 % (1993 and 1997) [1]. This improvement has been attributed to advances in treatment, better supportive care, and centralizing treatment in specialized centers with entry of patients into clinical trials [2, 3]. Approximately 1 in every 640 individuals in the US between the ages of 20 and 39 years is a survivor of childhood cancer [4]. Long-term survival rates vary with cancer type, demographic characteristics such as age, gender and race, tumor characteristics such as location and extent of disease, morphology, and genetic alterations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. National Registry of Childhood Tumours. http://www.ccrg.ox.ac.uk

  2. Stiller CA, Draper GJ. The epidemiology of cancer in children. In: Voute PA, Kalifa C, Barrett A, editors. Cancer in children: clinical management. 4th ed. Oxford: Oxford University Press; 1998. p. 3s.

    Google Scholar 

  3. Stiller CA. Centralized treatment, entry to trials and survival. Br J Cancer. 1994;70:352–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. National Cancer Policy Board; Weiner SI, Simone IV, Hewitt M, editors. Childhood cancer survivorship: improving care and quality of life. Washington, DC: National Academy of Sciences; 2003. p. 32

    Google Scholar 

  5. Stevens MCG, Mahler H, Parkes S. The health status of adult survivors of childhood cancer. Eur J Cancer. 1998;34:694–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lackner H, Benesch M, Schagerl S, et al. Prospective evaluation of late effects after childhood cancer therapy with a follow up of over 9 years. Eur J Pediatr. 2000;159:750–8.

    Article  CAS  PubMed  Google Scholar 

  7. Hudson MM, Mertens AC, Yasui Y, et al. Health status of adult long term survivors of childhood cancer: a report from the Childhood Cancer Survivors Study. JAMA. 2003;290:1583–92.

    Article  CAS  PubMed  Google Scholar 

  8. Mertens AC, Yasui Y, Neglia JP, et al. Late mortality experience in five-year survivors of childhood and adolescent cancer: the Childhood Cancer Survivor Study. J Clin Oncol. 2001;19(13):3163–72.

    CAS  PubMed  Google Scholar 

  9. Robison LL, Green D, Hudson M, et al. Long-term outcomes of adult survivors of childhood cancer: results from the childhood cancer survivor study. Cancer. 2005;104(11):2557–64.

    Article  PubMed  Google Scholar 

  10. Oeffinger K, Wallace WHB. Barriers to follow-up care of survivors in the United States and the United Kingdom. Pediatr Blood Cancer. 2006;46:135–42.

    Article  PubMed  Google Scholar 

  11. Kissen GDN, Wallace WHB. Long-term follow up therapy based guidelines. Leicester: United Kingdom Children’s Cancer Study group (UKCCSG), Pharmacia; 1995

    Google Scholar 

  12. Sklar CA. Endocrine complications of the successful treatment of neoplastic diseases in childhood. Growth Genet Horm. 2001;17:37–42.

    Google Scholar 

  13. Sklar CA. Childhood brain tumours. J Pediatr Endocrinol. 2002;15(2):669–73.

    Google Scholar 

  14. Jorgensen EV, Schwartz ID, Hvizdala E, et al. Neurotransmitter control of growth hormone secretion in children after cranial radiation therapy. J Pediatr Endocrinol. 1993;6:131–42.

    CAS  PubMed  Google Scholar 

  15. Schmiegelow M, Lassen S, Poulsen HS, et al. Growth hormone response to a growth hormone-releasing hormone stimulation test in a population-based study following cranial irradiation of childhood brain tumors. Horm Res. 2000;54:53–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lustig RH, Schriock EA, Kaplan SL, Grumbach MM. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency. Pediatrics. 1985;76:274–9.

    CAS  PubMed  Google Scholar 

  17. Saaman NA, Bakdash MM, Caderao JB, et al. Hypopituitarism after external irradiation. Evidence for both hypothalamic and pituitary origin. Ann Intern Med. 1975;83:771–7.

    Article  Google Scholar 

  18. Blacklay A, Grossman A, Ross RJ, et al. Cranial irradiation for cerebral and nasopharyngeal tumours in children: evidence for the production of a hypothalamic defect in growth hormone release. J Endocrinol. 1986;108:25–9.

    Article  CAS  PubMed  Google Scholar 

  19. Lam KS, Wang C, Yeung RT, et al. Hypothalamic hypopituitarism following cranial irradiation for nasopharyngeal carcinoma. Clin Endocrinol (Oxf). 1986;24:643–51.

    Article  CAS  Google Scholar 

  20. Pai HH, Thornton A, Katznelson L, et al. Hypothalamic/pituitary function following high-dose conformal radiotherapy to the base of skull: demonstration of a dose-effect relationship using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys. 2001;49:1079–92.

    Article  CAS  PubMed  Google Scholar 

  21. United Kingdom Children’s Cancer Study Group Late Effects Group. Therapy based long term follow-practice statement: hypothalamic pituitary axis. Leicester: United Kingdom Children’s Cancer Study group (UKCCSG), Pharmacia. p. 19

    Google Scholar 

  22. Lam KS, Tse VK, Wang C, et al. Effects of cranial irradiation on hypothalamic-pituitary function-a five year longitudinal study in patients with nasopharyngeal carcinoma. Q J Med. 1991;78(286):165–76.

    CAS  PubMed  Google Scholar 

  23. Littley MD, Shalet SM, Beardwell CG, et al. Hypopituitarism following external radiotherapy for pituitary tumours in adults. Q J Med. 1989;70(262):104–7.

    Google Scholar 

  24. Clayton PE, Shalet SM. Dose dependency of time of onset of radiation-induced growth hormone deficiency. J Pediatr. 1991;118:226–8.

    Article  CAS  PubMed  Google Scholar 

  25. Spoudeas HA, Hindmarsh PC, Matthews DR, et al. Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study. J Endocrinol. 1996;150:329–42.

    Article  CAS  PubMed  Google Scholar 

  26. Shalet SM, Price DA, Gibson B, et al. The effect of varying doses of cerebral irradiation on growth hormone production in childhood. Clin Endocrinol (Oxf). 1976;5:287–90.

    Article  CAS  Google Scholar 

  27. Bercu BB, Diamond Jr FB. Growth hormone neurosecretory dysfunction. Clin Endocrinol Metab. 1986;15:537–90.

    Article  CAS  PubMed  Google Scholar 

  28. Shalet SM, Price DA, Beardwell CG, et al. Normal growth despite abnormalities of growth hormone secretion in children treated for acute leukemia. J Pediatr. 1979;94:719–22.

    Article  CAS  PubMed  Google Scholar 

  29. Costin G. Effects of low-dose cranial radiation on growth hormone secretory dynamics and hypothalamic-pituitary function. Am J Dis Child. 1988;142:847–52.

    CAS  PubMed  Google Scholar 

  30. Shalet SM, Beardwell CG, Jones PH, et al. Growth hormone deficiency after treatment of acute leukemia in children. Arch Dis Child. 1976;51:489–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brennan BM, Rahim A, Mackie EM, et al. Growth hormone status in adults treated for acute lymphoblastic leukemia in childhood. Clin Endocrinol (Oxf). 1998;48:777–83.

    Article  CAS  Google Scholar 

  32. Kirk JA, Raghupathy P, Stevens MM, et al. Growth failure and growth-hormone deficiency after treatment for acute lymphoblastic leukemia. Lancet. 1987;1(8526):190–3.

    Article  CAS  PubMed  Google Scholar 

  33. Ogilvy-Stuart AL, Clark DJ, Wallace WH, et al. Endocrine deficit after fractionated total body irradiation. Arch Dis Child. 1992;67:1107–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muller HL, Klinkhammer-Schalke M, Kühl J, et al. Final height and weight of long-term survivors of childhood malignancies. Exp Clin Endocrinol Diabetes. 1998;106:135–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ogilvy-Stuart AL, Shalet SM. Growth and puberty after growth hormone treatment after irradiation for brain tumours. Arch Dis Child. 1995;73:141–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu W, Janss A, Moshang T. Adult height and adult sitting height in childhood medulloblastoma survivors. J Clin Endocrinol Metab. 2003;88(10):4677–81.

    Article  CAS  PubMed  Google Scholar 

  37. Sulmont V, Brauner R, Fontoura M, Rappaport R. Response to growth hormone treatment and final height after cranial or craniospinal irradiation. Acta Paediatr Scand Suppl. 1990;79:542–9.

    Article  CAS  Google Scholar 

  38. de Boer H, Blok GJ, Van der Veen EA. Clinical aspects of growth hormone deficiency in adults. Endocr Rev. 1995;16:63–86.

    Article  PubMed  Google Scholar 

  39. Talvensaari K, Knip M. Childhood cancer and later development of the metabolic syndrome. Ann Med. 1997;29:353–5.

    Article  CAS  PubMed  Google Scholar 

  40. Kaufman JM, Taelman P, Vermeulen A, Vandeweghe M. Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J Clin Endocrinol Metab. 1992;74:118–23.

    CAS  PubMed  Google Scholar 

  41. Stabler B. Impact of growth hormone (GH) therapy on quality of life along the life-span of GH-treated patients. Horm Res. 2001;56(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  42. Spiliotis BE, August GP, Hung W, et al. Growth hormone neurosecretory dysfunction. A treatable cause of short stature. JAMA. 1984;251:2223–30.

    Article  CAS  PubMed  Google Scholar 

  43. Moell C, Garwicz S, Westgren U, et al. Suppressed spontaneous secretion of growth hormone in girls after treatment for acute lymphoblastic lymphoma. Arch Dis Child. 1989;64:252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crowne EC, Moore C, Wallace WH, et al. A novel variant of growth hormone (GH) following low dose cranial irradiation. Clin Endocrinol (Oxf). 1992;36:59–68.

    Article  CAS  Google Scholar 

  45. Achermann JC, Hindmarsh PC, Brook CG. The relationship between the growth hormone and insulin-like growth factor axis in long-term survivors of childhood brain tumours. Clin Endocinol (Oxf). 1998;49:639–45.

    Article  CAS  Google Scholar 

  46. Ogilvy-Stuart AL, Ryder WD, Gattamaneni HR, et al. Growth hormone and tumour recurrence. Br Med J. 1992;304:1601–5.

    Article  CAS  Google Scholar 

  47. Swerdlow AJ, Reddingius RE, Higgins CD, et al. Growth hormone treatment of children with brain tumors and risk of tumor recurrence. J Clin Endocrinol Metab. 2000;85:4444–9.

    CAS  PubMed  Google Scholar 

  48. Sklar CA, Mertens AC, Mitby P, et al. Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer survivor Study. J Clin Endocrinol Metab. 2002;87:3136–41.

    Article  CAS  PubMed  Google Scholar 

  49. Sanders JE, Buckner CD, Leonard JM, et al. Late effects on gonadal function of cyclophosphamide, total-body irradiation, and marrow transplantation. Transplantation. 1983;36:252–5.

    Article  CAS  PubMed  Google Scholar 

  50. Pasqualini T, Escobar ME, Domene H, et al. Evaluation of gonadal function following long-term treatment for acute lymphoblastic leukemia in girls. Am J Pediatr Hematol Oncol. 1987;9:15–22.

    Article  CAS  PubMed  Google Scholar 

  51. Hall JE, Martin KA, Whitney HA, et al. Potential for fertility with replacement of hypothalamic gonadotrophin-releasing hormone in long term female survivors of cranial tumors. J Clin Endocrinol Metab. 1994;79:1166–72.

    CAS  PubMed  Google Scholar 

  52. Leiper AD, Stanhope R, Kitching P, et al. Precocious puberty after hypothalamic and pituitary irradiation in young children. N Engl J Med. 1984;311:920.

    Google Scholar 

  53. Quigley C, Cowell C, Jimenez M, et al. Normal or early development of puberty despite gonadal damage in children treated for acute lymphoblastic leukemia. N Engl J Med. 1989;321:143–51.

    Article  CAS  PubMed  Google Scholar 

  54. Ogilvy-Stuart AL, Clayton PE, Shalet SM. Cranial irradiation and early puberty. J Clin Endocrinol Metab. 1994;78:1282–6.

    CAS  PubMed  Google Scholar 

  55. Didock E, Davies HA, Didi M, et al. Pubertal growth in young adult survivors of childhood leukemia. J Clin Oncol. 1995;13:2503–7.

    Google Scholar 

  56. Davies HA, Didock E, Didi M, et al. Disproportionate short stature after cranial irradiation and combination chemotherapy for leukemia. Arch Dis Child. 1994;70:472–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shalet SM, Gibson B, Swindell R, Pearson D. Effect of spinal irradiation on growth. Arch Dis Child. 1987;62:461–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cara JF, Kreiter ML, Rosenfield RL. Height prognosis of children with true precocious puberty and growth hormone deficiency: effect of combination therapy with gonadotrophin releasing hormone agonist and growth hormone. J Pediatr. 1992;120:709–15.

    Article  CAS  PubMed  Google Scholar 

  59. Adan L, Souberbielle JC, Zucker JM, et al. Adult height in 24 patients treated for growth hormone deficiency and early puberty. J Clin Endocrinol Metab. 1997;82:229–33.

    CAS  PubMed  Google Scholar 

  60. Van Santen HM, Vulsma T, Dijkgraaf MG, et al. No damaging effect of chemotherapy in addition to radiotherapy on the thyroid axis in young adult survivors of childhood cancer. J Clin Endocrinol Metab. 2003;88:3657–63.

    Article  PubMed  CAS  Google Scholar 

  61. Constine LS, Woolf PD, Cann D, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993;328:87–94.

    Article  CAS  PubMed  Google Scholar 

  62. Schmiegelow M, Feldt-Rasmussen U, Rasmussen AK, et al. Assessment of the hypothalamo-pituitary-adrenal axis in patients treated with radiotherapy and chemotherapy for childhood brain tumor. J Clin Endocrinol Metab. 2003;88:3149–54.

    Article  CAS  PubMed  Google Scholar 

  63. Hancock SL, Cox RS, McDougall IR. Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med. 1991;325:599–605.

    Article  CAS  PubMed  Google Scholar 

  64. Crom DB, Kaste SC, Tubergen DG, et al. Ultrasonography for thyroid screening after head and neck irradiation in childhood cancer survivors. Med Pediatr Oncol. 1997;28:15–21.

    Article  CAS  PubMed  Google Scholar 

  65. Acharya S, Sarafoglou K, LaQuaglia M, et al. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer. 2003;97:2397–403.

    Article  PubMed  Google Scholar 

  66. Livesey EA, Brook CG. Thyroid dysfunction after radiotherapy and chemotherapy of brain tumours. Arch Dis Child. 1989;64:593–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paulino AC. Hypothyroidism in children with medulloblastoma: a comparison of 3600 and 2340 cGy craniospinal radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53:543–7.

    Article  PubMed  Google Scholar 

  68. Sanders JE, Pritchard S, Mahoney S, et al. Growth and development following marrow transplantation for leukemia. Blood. 1986;68:1129–35.

    CAS  PubMed  Google Scholar 

  69. Gleeson HK, Shalet SM. The impact of cancer therapy on the endocrine system in survivors of childhood brain tumours. Endocr Relat Cancer. 2004;11:589–602.

    Article  CAS  PubMed  Google Scholar 

  70. Cicognani A, Pasini A, Pession A, et al. Gonadal function and pubertal development after treatment of a childhood malignancy. J Pediatr Endocrinol Metab. 2003;16:S321–6.

    Google Scholar 

  71. Kreuser ED, Xiros N, Hetzel WD, Heimpel H. Reproductive and endocrine gonadal capacity in patients treated with COPP chemotherapy for Hodgkin’s disease. J Cancer Res Clin Oncol. 1987;113:260–6.

    Article  CAS  PubMed  Google Scholar 

  72. Thomson AB, Campbell AJ, Irvine DS, et al. Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. Lancet. 2002;360:361–7.

    Article  CAS  PubMed  Google Scholar 

  73. Gerl A, Muhlbayer D, Hansmann G, et al. The impact of chemotherapy on Leydig cell function in long term survivors of germ cell tumors. Cancer. 2001;91:1297–303.

    Article  CAS  PubMed  Google Scholar 

  74. Viviani S, Santoro A, Ragni G, et al. Gonadal toxicity after combination chemotherapy for Hodgkin’s disease. Comparative results of MOPP vs ABVD. Eur J Cancer Clin Oncol. 1985;21:601–5.

    Article  CAS  PubMed  Google Scholar 

  75. Waxman JH, Terry YA, Wrigley PF, et al. Gonadal function in Hodgkin’s disease: long-term follow-up of chemotherapy. Br Med J (Clin Res Ed). 1982;285:1612–3.

    Article  CAS  Google Scholar 

  76. Clark ST, Radford JA, Crowther D, et al. Gonadal function following chemotherapy for Hodgkin’s disease: a comparative study of MVPP and a seven-drug hybrid regimen. J Clin Oncol. 1995;13:134–9.

    CAS  PubMed  Google Scholar 

  77. Mackie EJ, Radford M, Shalet SM. Gonadal function following chemotherapy for childhood Hodgkin’s disease. Med Pediatr Oncol. 1996;27:74–8.

    Article  CAS  PubMed  Google Scholar 

  78. Chiarelli AM, Marrett LD, Darlington G. Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964–1988 in Ontario, Canada. Am J Epidemiol. 1999;150:245–54.

    Article  CAS  PubMed  Google Scholar 

  79. Whitehead E, Shalet SM, Blackledge G, et al. The effect of combination chemotherapy on ovarian function in women treated for Hodgkin’s disease. Cancer. 1983;52:988–93.

    Article  CAS  PubMed  Google Scholar 

  80. Speiser B, Rubin P, Cassarett G. Aspermia following lower truncal irradiation in Hodgkin’s disease. Cancer. 1973;32:692–8.

    Article  CAS  PubMed  Google Scholar 

  81. Centola GM, Keller JW, Henzler M, Rubin P. Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J Androl. 1994;15:608–13.

    CAS  PubMed  Google Scholar 

  82. Clifton DK, Bremner WJ. The effect of testicular x-irradiation on spermatogenesis in man. A comparison with the mouse. J Androl. 1983;4:387–92.

    Article  CAS  PubMed  Google Scholar 

  83. Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.

    Article  CAS  PubMed  Google Scholar 

  84. Shalet SM, Tsatsoulis A, Whitehead E, Read G. Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J Endocrinol. 1989;120:161–5.

    Article  CAS  PubMed  Google Scholar 

  85. Castillo LA, Craft AW, Kernahan J, et al. Gonadal function after 12-Gy testicular irradiation in childhood acute lymphoblastic leukemia. Med Pediatr Oncol. 1990;18:185–9.

    Article  CAS  PubMed  Google Scholar 

  86. Wallace WH, Thomson AB, Saran F, et al. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys. 2005;62:738–44.

    Article  PubMed  Google Scholar 

  87. Wallace WHB, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18:117–21.

    Article  CAS  PubMed  Google Scholar 

  88. Chemaitilly W, Mertens AC, Mitby P, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91:1723–8.

    Article  CAS  PubMed  Google Scholar 

  89. Sanders JE, Hawley J, Levy W, et al. Pregnancies following high-dose cyclophosphamide with or without highdose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996;87:3045–52.

    CAS  PubMed  Google Scholar 

  90. Bath LE, Critchley HO, Chambers SE, et al. Ovarian and uterine characteristics after total body irradiation in childhood and adolescence: response to sex steroid replacement. Br J Obstet Gynaecol. 1999;106:1265–72.

    Article  CAS  PubMed  Google Scholar 

  91. Critchley HO, Wallace WH, Shalet SM, et al. Abdominal irradiation in childhood: the potential for pregnancy. Br J Obstet Gynaecol. 1992;99:392–4.

    Article  CAS  PubMed  Google Scholar 

  92. Lushbaugh CC, Casarett GW. The effects of gonadal irradiation in clinical radiation in therapy: a review. Cancer. 1976;37:1111–25.

    Article  CAS  PubMed  Google Scholar 

  93. Rosen A. Third-party reproduction and adoption in cancer patients. J Natl Cancer Inst Monogr. 2005;34:91–3.

    Article  PubMed  Google Scholar 

  94. Fossa SD, Aass N, Molne K. Is routine pre-treatment cryopreservation of semen worthwhile in the management of patients with testicular cancer? Br J Urol. 1989;64:524–9.

    Article  CAS  PubMed  Google Scholar 

  95. Schover LR, Brey K, Litchin A, et al. Knowledge and experience regarding cancer, infertility, and sperm banking in younger male survivors. J Clin Oncol. 2002;20:1880–9.

    Article  PubMed  Google Scholar 

  96. Schover LR, Rybicki LA, Martin BA, et al. Having children after cancer. A pilot survey of survivors’ attitudes and experiences. Cancer. 1999;86:697–709.

    Article  CAS  PubMed  Google Scholar 

  97. Brinster RL, Zimmerman JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994;91:11298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schlatt S, von Schonfeldt V, Schepers AG. Male germ cell transplantation: an experimental approach with a clinical perspective. Br Med Bull. 2000;56:824–36.

    Article  CAS  PubMed  Google Scholar 

  99. Newton H. The cryopreservation of ovarian tissue as a strategy for preserving the fertility of cancer patients. Hum Reprod Update. 1998;4:237–47.

    Article  CAS  PubMed  Google Scholar 

  100. Lee SJ, Schover LR, Partridge AH, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24:2917–31.

    Article  PubMed  Google Scholar 

  101. Oktay K. Further evidence on the safety and success of ovarian stimulation with letrozole and tamoxifen in breast cancer patients undergoing in vitro fertilization to cryopreserve their embryos for fertility preservation. J Clin Oncol. 2005;23:3858–9.

    Article  PubMed  Google Scholar 

  102. Oktay K, Buyuk E, Libertella N, et al. Fertility preservation in breast cancer patients: a prospective controlled comparison of ovarian stimulation with tamoxifen and letrozole for embryo cryopreservation. J Clin Oncol. 2005;23(19):4347–53.

    Article  CAS  PubMed  Google Scholar 

  103. Green DM, Whittton JA, Stovall M, et al. Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Am J Obstet Gynecol. 2002;187:1070–80.

    Article  PubMed  Google Scholar 

  104. Sankila R, Olsen JH, Anderson H, et al. Risk of cancer among offspring of childhood-cancer survivors. Association of Nordic Cancer Registries and the Nordic Society of Paediatric Haematology and Oncology. N Engl J Med. 1998;338:1339–44.

    Article  CAS  PubMed  Google Scholar 

  105. Stovall M, Donaldson SS, Weathers RE, et al. Genetic effects of radiotherapy for childhood cancer: gonadal dose reconstruction. Int J Radiat Oncol Biol Phys. 2004;60:542–52.

    Article  PubMed  Google Scholar 

  106. Green DM, Whitton JA, Stovall M, et al. Pregnancy outcomes of partners of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2003;21:716–21.

    Article  PubMed  Google Scholar 

  107. Boice Jr JD, Tawn EJ, Winther JF, et al. Genetic effects of radiotherapy for childhood cancer. Health Phys. 2003;85:65–80.

    Article  CAS  PubMed  Google Scholar 

  108. Bhatia S, Sklar C. Second cancers in survivors of childhood cancer. Nat Rev Cancer. 2002;2(2):124–32.

    Article  PubMed  Google Scholar 

  109. De Vathaire F. Incidence of second malignant neoplasms (SMN) after a cancer in childhood: a European cohort study of 4111 children. Med Pediatr Oncol. 1994;23:174–5.

    Google Scholar 

  110. Jenkinson HC, Hawkins MM, Stiller CA, Winter DL, Marsden HB, Stevens MCG. Long-term population-based risks of second malignant neoplasms after childhood cancer in Britain. Br J Cancer. 2004;91(11):1905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Meadows AT. Second tumours. Eur J Cancer. 2001;37(16):2074–81.

    Article  CAS  PubMed  Google Scholar 

  112. Draper GJ, Sanders BM, Kingston JE. Second primary neoplasms in patients with retinoblastoma. Br J Cancer. 1986;53(5):661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wenzel CT, Halperin EC, Fisher SR. Second malignant neoplasms of the head and neck in survivors of retinoblastoma. Ear Nose Throat J. 2001;80:108–12.

    Google Scholar 

  114. Carli M, Frascella E, Tournadde MF, et al. Second malignant neoplasms in patients treated on SIOP Wilms’ tumour studies and trials 1,2,5 and 6. Med Pediatr Oncol. 1997;29(4):239–44.

    Article  CAS  PubMed  Google Scholar 

  115. Rich DC, Corporan CA, Smith MB, et al. Second malignant neoplasms in children after treatment of soft tissue sarcoma. J Pediatr Surg. 1997;32(2):369–72.

    Article  CAS  PubMed  Google Scholar 

  116. Bacci G, Longhi A, Barbieri E, Ferrari S, et al. Second malignancy in 597 patients with Ewing sarcoma of bone treated at a single institution with adjuvant and neoadjuvant chemotherapy between 1972 and 1999. J Pediatr Hematol Oncol. 2005;27(10):517–20.

    Article  PubMed  Google Scholar 

  117. Buyukpamukcu M, Varan A, Yazici N, et al. Second malignant neoplasms following the treatment of brain tumors in children. J Child Neurol. 2006;21(5):433–6.

    PubMed  Google Scholar 

  118. Lorigan P, Radford J, Howell A, Thatcher N. Lung cancer after treatment for Hodgkin’s lymphoma: a systematic review. Lancet Oncol. 2005;6(10):773–9.

    Article  PubMed  Google Scholar 

  119. Dores G, Metayer C, Curtis R, et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years. J Clin Oncol. 2002;20(16):3484–94.

    Article  PubMed  Google Scholar 

  120. Mudie NY, Swerdlow AJ, Higgins CD, et al. Risk of second malignancy after non-Hodgkin’s lymphoma: a British Cohort Study. J Clin Oncol. 2006;24(10):1568–74.

    Article  PubMed  Google Scholar 

  121. Ragusa R, Russo S, Villari L, Schiliro G. Hodgkin’s disease as a second malignant neoplasm in childhood: report of a case and review of the literature. Pediatr Hematol Oncol. 2001;18(6):407–14.

    Article  CAS  PubMed  Google Scholar 

  122. Wong FL, Boice JD, Abramson DH. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA. 1997;278(15):1262–7.

    Article  CAS  PubMed  Google Scholar 

  123. Yonemoto T, Tatezaki S, Ishii T. Multiple primary cancers in patients with osteosarcoma: influence of anticancer drugs and genetic factors. Am J Clin Oncol. 2004;27(3):220–4.

    Article  PubMed  Google Scholar 

  124. Collins BJ, Chiappetta G, Schneider AB. RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. J Clin Endocrinol Metab. 2002;87(8):3941–6.

    Article  CAS  PubMed  Google Scholar 

  125. Caglar K, Varan A, Akyuz C. Second neoplasms in pediatric patients treated for cancer: a center’s 30-year experience. J Pediatr Hematol Oncol. 2006;28(6):374–8.

    Article  PubMed  Google Scholar 

  126. Guibout C, Adjadj E, Rubino C. Malignant breast tumors after radiotherapy for a first cancer during childhood. J Clin Oncol. 2005;23(1):197–204.

    Article  PubMed  Google Scholar 

  127. Cohen RJ, Curtis RE, Inskip PD. The risk of developing second cancers among survivors of childhood soft tissue sarcoma. Cancer. 2005;103(11):2391–6.

    Article  PubMed  Google Scholar 

  128. Bassal M, Mertens AC, Taylor L. Risk of selected subsequent carcinomas in survivors of childhood d cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2006;24(3):476–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamish B. Wallace or Hamish B. Wallace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reece-Mills, M., Bath, L.E., Kelnar, C.J., Wallace, H.B., Keys, C., Carachi, R. (2016). Long-Term Effects of Childhood Cancer Therapy on Growth and Fertility. In: Carachi, R., Grosfeld, J. (eds) The Surgery of Childhood Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48590-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48590-3_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48588-0

  • Online ISBN: 978-3-662-48590-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics