Skip to main content

Comparing Fuzzy Clusterings in High Dimensionality

  • Conference paper
  • First Online:
Clustering High--Dimensional Data (CHDD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7627))

Included in the following conference series:

Abstract

Due to the specificity of clustering, a problem that is intrinsically ill-posed, there are several approaches to comparing clusterings. Comparison of clusterings obtained in different conditions is often the only affordable evaluation strategy, due to the lack of a ground truth. In this chapter we address a class of dimensionality-independent methods which can be applied in the presence of a high-dimensional input space. Specifically, we review some generalizations of this class of methods to the case of fuzzy clustering, in several variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D.T., Bezdek, J.C., Popescu, M., Keller, J.M.: Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans. Fuzzy Syst. 18(5), 906–918 (2010)

    Article  Google Scholar 

  2. Anguita, D., Ridella, S., Rovetta, S.: Worst case analysis of weight inaccuracy effects in multilayer perceptrons. IEEE Trans. Neural Networks 10(2), 415–418 (1999)

    Article  Google Scholar 

  3. Barni, M., Cappellini, V., Mecocci, A.: Comments on ‘A possibilistic approach to clustering’. IEEE Trans. Fuzzy Syst. 4(3), 393–396 (1996)

    Article  Google Scholar 

  4. Baroni-Urbani, C., Buser, M.W.: Similarity of binary data. Syst. Biol. 25(3), 251–259 (1976). http://sysbio.oxfordjournals.org/content/25/3/251.abstract

    Google Scholar 

  5. Ben-David, S., von Luxburg, U., Pál, D.: A sober look at clustering stability. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 5–19. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Altman, R.B., Dunker, A.K., Hunter, L., Lauderdale, K., Klein, T.E. (eds.) BIOCOMPUTING 2002 Proceedings of the Pacific Symposium, pp. 6–17 (2001)

    Google Scholar 

  7. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)

    Book  MATH  Google Scholar 

  8. Brouwer, R.K.: Extending the rand, adjusted rand and jaccard indices to fuzzy partitions. J. Intell. Inf. Syst. 32(3), 213–235 (2009)

    Article  Google Scholar 

  9. Buser, M.W., Baroni-Urbani, C.: A direct nondimensional clustering method for binary data. Biometrics 38(2), 351–360 (1982). http://www.jstor.org/stable/2530449

    Article  MATH  Google Scholar 

  10. Campello, R.J.G.B.: Generalized external indexes for comparing data partitions with overlapping categories. Pattern Recogn. Lett. 31, 966–975 (2010)

    Article  Google Scholar 

  11. Carpineto, C., Romano, G.: Consensus clustering based on a new probabilistic rand index with application to subtopic retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2315–2326 (2012)

    Article  Google Scholar 

  12. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance measures. J. Systemics Cybern. Inf. 8, 43–48 (2010)

    Google Scholar 

  13. Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm. ACM Trans. Math. Softw. 13(3), 262–280 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davé, R.N., Krishnapuram, R.: Robust clustering methods: a unified view. IEEE Trans. Fuzzy Syst. 5(2), 270–293 (1997)

    Article  Google Scholar 

  15. Filippone, M., Masulli, F., Rovetta, S.: Applying the possibilistic c-means algorithm in kernel-induced spaces. IEEE Trans. Fuzzy Syst. 18, 572–584 (2010)

    Article  Google Scholar 

  16. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983). http://dx.doi.org/10.2307/2288117

    Article  MATH  Google Scholar 

  17. Fred, A.L.N., Jain, A.K.: Data clustering using evidence accumulation. Int. Conf. Pattern Recog. 4, 276–280 (2002)

    Article  Google Scholar 

  18. Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 450–465 (1999)

    Article  Google Scholar 

  19. Frigui, H., Krishnapuram, R.: A robust clustering algorithm based on m-estimator. In: Proceedings of the 1st International Conference on Neural, Parallel and Scientific Computations, Atlanta, USA, vol. 1, pp. 163–166, May 1995

    Google Scholar 

  20. Huber, P.J.: Robust Stat. Wiley, New York (1981)

    Book  Google Scholar 

  21. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  MATH  Google Scholar 

  22. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise des Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  23. Kearns, M., Schapire, R.: Efficient distribution-free learning of probabilistic concepts. J. Comput. Syst. Sci. 48(3), 464–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klawonn, F.: Fuzzy clustering: insights and a new approach. Mathware Soft Comput. 11(3), 125–142 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  26. Krishnapuram, R., Keller, J.M.: The possibilistic \(C\)-Means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4(3), 385–393 (1996)

    Article  Google Scholar 

  27. Kuncheva, L.I., Vetrov, D.P.: Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1798–1808 (2006)

    Article  Google Scholar 

  28. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)

    Article  MATH  Google Scholar 

  29. Masulli, F., Rovetta, S.: Clustering High-Dimensional Data. In: Proceedings of CHDD 2012, Clustering High-Dimensional Data, Series Lecture Notes in Computer Science, LNCS 7627, 1, Springer-Verlag, Heidelberg, Germany (2015)

    Google Scholar 

  30. Masulli, F., Rovetta, S.: Soft transition from probabilistic to possibilistic fuzzy clustering. IEEE Trans. Fuzzy Syst. 14(4), 516–527 (2006)

    Article  Google Scholar 

  31. Meilă, M.: Comparing clusterings-an information based distance. J. Multivar. Anal. 98(5), 873–895 (2007). http://dx.doi.org/10.1016/j.jmva.2006.11.013

    Article  MathSciNet  MATH  Google Scholar 

  32. Ménard, M., Courboulay, V., Dardignac, P.A.: Possibilistic and probabilistic fuzzy clustering: unification within the framework of the non-extensive thermostatistics. Pattern Recogn. 36(6), 1325–1342 (2003)

    Article  MATH  Google Scholar 

  33. Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. U.S.A. 28(12), 535–537 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  35. Pal, N.R., Pal, K., Bezdek, J.C.: A mixed c-Means clustering model. In: FUZZIEEE97: Proceedings of the International Conference on Fuzzy Systems, pp. 11–21. IEEE, Barcelona (1997)

    Google Scholar 

  36. Rand, W.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  37. Real, R., Vargas, J.M.: The probabilistic basis of jaccard’s index of similarity. Syst. Biol. 45, 380–385 (1996)

    Article  Google Scholar 

  38. Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recogn. Lett. 11, 589–594 (1990)

    Article  MATH  Google Scholar 

  39. Rose, K., Gurewitz, E., Fox, G.: Statistical mechanics and phase transitions in clustering. Phys. Rev. Lett. 65, 945–948 (1990)

    Article  Google Scholar 

  40. Rovetta, S., Masulli, F.: An experimental validation of some indexes of fuzzy clustering similarity. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp. 132–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  41. Rovetta, S., Masulli, F.: Visual stability analysis for model selection in graded possibilistic clustering. Inf. Sci. 279, 37–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ruspini, E.H.: A new approach to clustering. Inf. Control 15(1), 22–32 (1969)

    Article  MATH  Google Scholar 

  43. Shi, G.: Multivariate data analysis in palaeoecology and palaeobiogeographya review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105(3–4), 199–234 (1993)

    Article  Google Scholar 

  44. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 63(2), 411–423 (2001). http://dx.doi.org/10.1111/1467-9868.00293

    Article  MathSciNet  MATH  Google Scholar 

  45. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Rovetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rovetta, S., Masulli, F. (2015). Comparing Fuzzy Clusterings in High Dimensionality. In: Masulli, F., Petrosino, A., Rovetta, S. (eds) Clustering High--Dimensional Data. CHDD 2012. Lecture Notes in Computer Science(), vol 7627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48577-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48577-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48576-7

  • Online ISBN: 978-3-662-48577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics