Advertisement

Functional Dendritic Polymer-Based Nanoscale Vehicles for Imaging-Guided Cancer Therapy

  • Yanhong Zhang
  • Kui LuoEmail author
  • Zhongwei Gu
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 6)

Abstract

The quest for highly efficient and accurate diagnosis and specific therapy approaches has become the key factor for successful cancer treatment. Over recent decades, with the advancements in the fields of nanotechnology and biomaterials, functional nanomaterials have been developed as nanocarriers for cancer diagnosis and therapy. Unlike the traditional low-molecular-weight imaging probes and therapeutic agents, early clinical results showed that nanocarriers with imaging and therapeutic agents could result in increased accumulation in tumor, increased signal intensity, enhanced anticancer efficacy, and reduced side effects owing to the passive targeting features of nanoparticles via enhanced permeability and retention (EPR) effect. Recently, new nanomedicine enables the incorporation of imaging agents and anticancer agents in one system, namely, theranostic nanomedicine, which combines both therapeutic and diagnostic capabilities in a single entity for personalized medicine. Those novel nanosystems for cancer theranostics are emergent and have promising applications in concurrent molecular imaging of biomarkers, delivery of anticancer drugs, monitoring of nanosystems’ behaviors in vivo, simultaneous monitoring of the disease progression, and guidance of therapeutic outcomes. Biodegradable polymer-based theranostic nanosystems have demonstrated great potential clinical impact for the foreseeable future, due to their good biocompatibility and flexible chemistry. Dendritic polymers are a class of well-defined macromolecules with branching units, precise structures, low polydispersity, controllable nanoscale size, as well as highly adaptable and flexible surface chemistry. These unique features have proposed dendritic polymers as nanoscale imaging agents, drug delivery systems, and theranostic nanosystems for cancer treatment. This chapter highlights the advantages of dendritic polymer-based theranostic nanosystems and the emergent concept of theranostics for the safe and effective tumor treatment in the next generation nanomedicine. The novel developments of dendritic polymer-based theranostic nanosystems described here provide great potential to achieve better cancer therapeutic.

Keywords

Cancer therapy Cancer diagnosis Dendritic polymers Nanoparticles Theranostic Biosafety 

References

  1. 1.
    Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437CrossRefGoogle Scholar
  2. 2.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760CrossRefGoogle Scholar
  3. 3.
    Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316CrossRefGoogle Scholar
  4. 4.
    Yang Y, Pan D, Luo K, Li L, Gu Z (2013) Biodegradable and amphiphilic block copolymer–doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34:8430–8443CrossRefGoogle Scholar
  5. 5.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20CrossRefGoogle Scholar
  6. 6.
    Kroon J, Metselaar JM, Storm G, van der Pluijm G (2014) Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat Rev 40:578–584CrossRefGoogle Scholar
  7. 7.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Futur Med 2:681–693Google Scholar
  8. 8.
    Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605CrossRefGoogle Scholar
  9. 9.
    Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976CrossRefGoogle Scholar
  10. 10.
    Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R (2005) Polymer therapeutics designed for a combination therapy of hormone‐dependent cancer. Angew Chem 117:4129–4134CrossRefGoogle Scholar
  11. 11.
    Li C, Yu D-F, Newman RA, Cabral F, Stephens LC, Hunter N, Milas L, Wallace S (1998) Complete regression of well-established tumors using a novel water-soluble poly (L-glutamic acid)-paclitaxel conjugate. Cancer Res 58:2404–2409Google Scholar
  12. 12.
    Hreczuk-Hirst D, Chicco D, German L, Duncan R (2001) Dextrins as potential carriers for drug targeting: tailored rates of dextrin degradation by introduction of pendant groups. Int J Pharm 230:57–66CrossRefGoogle Scholar
  13. 13.
    Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701CrossRefGoogle Scholar
  14. 14.
    Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43CrossRefGoogle Scholar
  15. 15.
    Patri AK, Majoros IJ, Baker JR (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6:466–471CrossRefGoogle Scholar
  16. 16.
    Liu M, Fréchet JM (1999) Designing dendrimers for drug delivery. Pharm Sci Technol Today 2:393–401CrossRefGoogle Scholar
  17. 17.
    Tomalia D, Reyna L, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35:61CrossRefGoogle Scholar
  18. 18.
    Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462CrossRefGoogle Scholar
  19. 19.
    Berna M, Dalzoppo D, Pasut G, Manunta M, Izzo L, Jones AT, Duncan R, Veronese FM (2006) Novel monodisperse PEG-dendrons as new tools for targeted drug delivery: synthesis, characterization and cellular uptake. Biomacromolecules 7:146–153CrossRefGoogle Scholar
  20. 20.
    She W, Li N, Luo K, Guo C, Wang G, Geng Y, Gu Z (2013) Dendronized heparin − doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials 34:2252–2264CrossRefGoogle Scholar
  21. 21.
    Mo B, Liu H, Zhou X, Zhao Y (2015) Facile synthesis of photolabile dendritic-unit-bridged hyperbranched graft copolymers for stimuli-triggered topological transition and controlled release of Nile red. Polym Chem 6:3489–3501CrossRefGoogle Scholar
  22. 22.
    Liu J, Pang Y, Huang W, Zhu X, Zhou Y, Yan D (2010) Self-assembly of phospholipid-analogous hyperbranched polymers nanomicelles for drug delivery. Biomaterials 31:1334–1341CrossRefGoogle Scholar
  23. 23.
    Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L-A (2010) Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Deliv 7:1387–1398CrossRefGoogle Scholar
  24. 24.
    Fischer M, Vögtle F (1999) Dendrimers: from design to application—a progress report. Angew Chem Int Ed 38:884–905CrossRefGoogle Scholar
  25. 25.
    Bosman A, Janssen H, Meijer E (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99:1665–1688CrossRefGoogle Scholar
  26. 26.
    Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132CrossRefGoogle Scholar
  27. 27.
    Esfand R, Tomalia DA (2001) Poly(amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436CrossRefGoogle Scholar
  28. 28.
    Darbre T, Reymond J-L (2006) Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. Acc Chem Res 39:925–934CrossRefGoogle Scholar
  29. 29.
    Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57:2271–2286CrossRefGoogle Scholar
  30. 30.
    Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC (2001) Specific targeting of folate–dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magn Reson Mater Phys Biol Med 12:104–113CrossRefGoogle Scholar
  31. 31.
    Kobayashi H, Brechbiel MW (2004) Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 5:539–549CrossRefGoogle Scholar
  32. 32.
    Patri AK, Kukowska-Latallo JF, Baker JR Jr (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214CrossRefGoogle Scholar
  33. 33.
    Tang MX, Redemann CT, Szoka FC (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714CrossRefGoogle Scholar
  34. 34.
    Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202CrossRefGoogle Scholar
  35. 35.
    Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM (2006) Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials 27:660–669CrossRefGoogle Scholar
  36. 36.
    Han L, Huang R, Li J, Liu S, Huang S, Jiang C (2011) Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer. Biomaterials 32:1242–1252CrossRefGoogle Scholar
  37. 37.
    Hu J, Su Y, Zhang H, Xu T, Cheng Y (2011) Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery. Biomaterials 32:9950–9959CrossRefGoogle Scholar
  38. 38.
    D’Emanuele A, Attwood D (2005) Dendrimer–drug interactions. Adv Drug Deliv Rev 57:2147–2162CrossRefGoogle Scholar
  39. 39.
    Kannan RM, Nance E, Kannan S, Tomalia DA (2014) Emerging concepts in dendrimer‐based nanomedicine: from design principles to clinical applications. J Intern Med 276:579–617CrossRefGoogle Scholar
  40. 40.
    Shah ND, Parekh HS, Steptoe RJ (2014) Asymmetric peptide dendrimers are effective linkers for antibody-mediated delivery of diverse payloads to B cells in vitro and in vivo. Pharm Res 31:3150–3160CrossRefGoogle Scholar
  41. 41.
    Medina SH, El-Sayed ME (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141CrossRefGoogle Scholar
  42. 42.
    Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, Minko T (2006) Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem 17:1464–1472CrossRefGoogle Scholar
  43. 43.
    Kopeček J, Kopečková P, Minko T, Lu Z-R, Peterson C (2001) Water soluble polymers in tumor targeted delivery. J Control Release 74:147–158CrossRefGoogle Scholar
  44. 44.
    Kopeček J, Kopečková P, Minko T, Lu Z-R (2000) HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm 50:61–81CrossRefGoogle Scholar
  45. 45.
    Tekade RK, Kumar PV, Jain NK (2008) Dendrimers in oncology: an expanding horizon. Chem Rev 109:49–87CrossRefGoogle Scholar
  46. 46.
    Picard FJ, Bergeron MG (2002) Rapid molecular theranostics in infectious diseases. Drug Discov Today 7:1092–1101CrossRefGoogle Scholar
  47. 47.
    Baum RP, Kulkarni HR (2012) Theranostics: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy-the Bad Berka experience. Theranostics 2:437CrossRefGoogle Scholar
  48. 48.
    Mashal A, Sitharaman B, Li X, Avti PK, Sahakian AV, Booske JH, Hagness SC (2010) Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials. Biomed Eng IEEE Trans 57:1831–1834CrossRefGoogle Scholar
  49. 49.
    Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882CrossRefGoogle Scholar
  50. 50.
    Singh SP (2011) Multifunctional magnetic quantum dots for cancer theranostics. J Biomed Nanotechnol 7:95–97CrossRefGoogle Scholar
  51. 51.
    Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902CrossRefGoogle Scholar
  52. 52.
    Cheng S-H, Lee C-H, Yang C-S, Tseng F-G, Mou C-Y, Lo L-W (2009) Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J Mater Chem 19:1252–1257CrossRefGoogle Scholar
  53. 53.
    Han X-J, Sun L-F, Nishiyama Y, Feng B, Michiue H, Seno M, Matsui H, Tomizawa K (2013) Theranostic protein targeting ErbB2 for bioluminescence imaging and therapy for cancer. PLoS One 8:e75288CrossRefGoogle Scholar
  54. 54.
    Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104CrossRefGoogle Scholar
  55. 55.
    Krasia-Christoforou T, Georgiou TK (2013) Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J Mater Chem B 1:3002–3025CrossRefGoogle Scholar
  56. 56.
    Khandare J, Calderón M, Dagia NM, Haag R (2012) Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41:2824–2848CrossRefGoogle Scholar
  57. 57.
    Calderón M, Quadir MA, Strumia M, Haag R (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92:1242–1251CrossRefGoogle Scholar
  58. 58.
    Quadir MA, Haag R (2012) Biofunctional nanosystems based on dendritic polymers. J Control Release 161:484–495CrossRefGoogle Scholar
  59. 59.
    Dong R, Zhou Y, Zhu X (2014) Supramolecular dendritic polymers: from synthesis to applications. Acc Chem Res 47:2006–2016CrossRefGoogle Scholar
  60. 60.
    Tomalia DA, Christensen JB, Boas U (2012) Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future. Cambridge University Press, New YorkCrossRefGoogle Scholar
  61. 61.
    Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu S, Abendschein D, Anderson CJ, Welch MJ (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci 106:685–690CrossRefGoogle Scholar
  62. 62.
    Almutairi A, Guillaudeu SJ, Berezin MY, Achilefu S, Fréchet JM (2008) Biodegradable pH-sensing dendritic nanoprobes for near-infrared fluorescence lifetime and intensity imaging. J Am Chem Soc 130:444–445CrossRefGoogle Scholar
  63. 63.
    Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185CrossRefGoogle Scholar
  64. 64.
    Reichert S, Calderón M, Licha K, Haag R (2012) Multivalent dendritic architectures for theranostics. In: Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad O (eds) Multifunctional nanoparticles for drug delivery applications. Springer, New York, pp 315–344Google Scholar
  65. 65.
    Luo K, Liu G, He B, Wu Y, Gong Q, Song B, Ai H, Gu Z (2011) Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes. Biomaterials 32:2575–2585CrossRefGoogle Scholar
  66. 66.
    Luo K, Liu G, Zhang X, She W, He B, Nie Y, Li L, Wu Y, Zhang Z, Gong Q (2009) Functional L-lysine dendritic macromolecules as liver-imaging probes. Macromol Biosci 9:1227–1236CrossRefGoogle Scholar
  67. 67.
    Luo K, Li C, Wang G, Nie Y, He B, Wu Y, Gu Z (2011) Peptide dendrimers as efficient and biocompatible gene delivery vectors: synthesis and in vitro characterization. J Control Release 155:77–87CrossRefGoogle Scholar
  68. 68.
    Luo K, Li C, Li L, She W, Wang G, Gu Z (2012) Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 33:4917–4927CrossRefGoogle Scholar
  69. 69.
    Luo K, Liu G, She W, Wang Q, Wang G, He B, Ai H, Gong Q, Song B, Gu Z (2011) Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials 32:7951–7960CrossRefGoogle Scholar
  70. 70.
    Jain K, Kesharwani P, Gupta U, Jain N (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142CrossRefGoogle Scholar
  71. 71.
    Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237CrossRefGoogle Scholar
  72. 72.
    Chen H-T, Neerman MF, Parrish AR, Simanek EE (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048CrossRefGoogle Scholar
  73. 73.
    Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of polyamidoamine dendrimers having poly (ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11:910–917CrossRefGoogle Scholar
  74. 74.
    Margerum LD, Campion BK, Koo M, Shargill N, Lai J-J, Marumoto A, Sontum PC (1997) Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J Alloys Compd 249:185–190CrossRefGoogle Scholar
  75. 75.
    Boyd BJ, Kaminskas LM, Karellas P, Krippner G, Lessene R, Porter CJ (2006) Cationic poly-L-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol Pharm 3:614–627CrossRefGoogle Scholar
  76. 76.
    Dong Y, Gunning P, Cao H, Mathew A, Newland B, Saeed AO, Magnusson JP, Alexander C, Tai H, Pandit A (2010) Dual stimuli responsive PEG based hyperbranched polymers. Polym Chem 1:827–830CrossRefGoogle Scholar
  77. 77.
    Dong Y, Saeed AO, Hassan W, Keigher C, Zheng Y, Tai H, Pandit A, Wang W (2012) “One‐step” preparation of thiol‐Ene clickable PEG‐based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun 33:120–126CrossRefGoogle Scholar
  78. 78.
    Liu B, Kazlauciunas A, Guthrie JT, Perrier S (2005) One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:2131–2136CrossRefGoogle Scholar
  79. 79.
    Zargar A, Chang K, Taite LJ, Schork FJ (2011) Mathematical modeling of hyperbranched water‐soluble polymers with applications in drug delivery. Macromol React Eng 5:373–384CrossRefGoogle Scholar
  80. 80.
    Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 16:1181–1188CrossRefGoogle Scholar
  81. 81.
    Frauenrath H (2005) Dendronized polymers-building a new bridge from molecules to nanoscopic objects. Prog Polym Sci 30:325–384CrossRefGoogle Scholar
  82. 82.
    Schlüter AD, Rabe JP (2000) Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew Chem Int Ed 39:864–883CrossRefGoogle Scholar
  83. 83.
    Gao M, Jia X, Kuang G, Li Y, Liang D, Wei Y (2009) Thermo-and pH-responsive dendronized copolymers of styrene and maleic anhydride pendant with poly (amidoamine) dendrons as side groups. Macromolecules 42:4273–4281CrossRefGoogle Scholar
  84. 84.
    Laurent BA, Grayson SM (2011) Synthesis of cyclic dendronized polymers via divergent “graft-from” and convergent click “graft-to” routes: preparation of modular toroidal macromolecules. J Am Chem Soc 133:13421–13429CrossRefGoogle Scholar
  85. 85.
    Rudick JG, Percec V (2008) Induced helical backbone conformations of self-organizable dendronized polymers. Acc Chem Res 41:1641–1652CrossRefGoogle Scholar
  86. 86.
    Percec V, Rudick JG, Peterca M, Heiney PA (2008) Nanomechanical function from self-organizable dendronized helical polyphenylacetylenes. J Am Chem Soc 130:7503–7508CrossRefGoogle Scholar
  87. 87.
    Bai L, Li W, Chen J, Bo F, Gao B, Liu H, Li J, Wu Y, Ba X (2013) Water‐soluble fluorescent probes based on dendronized polyfluorenes for cell imaging. Macromol Rapid Commun 34:539–547CrossRefGoogle Scholar
  88. 88.
    Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G (2013) Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34:1570–1580CrossRefGoogle Scholar
  89. 89.
    Chen Q, Wang H, Liu H, Wen S, Peng C, Shen M, Zhang G, Shi X (2015) Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 87:3949–3956CrossRefGoogle Scholar
  90. 90.
    Rolfe BE, Blakey I, Squires O, Peng H, Boase NR, Alexander C, Parsons PG, Boyle GM, Whittaker AK, Thurecht KJ (2014) Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J Am Chem Soc 136:2413–2419CrossRefGoogle Scholar
  91. 91.
    Ye L, Letchford K, Heller M, Liggins R, Guan D, Kizhakkedathu JN, Brooks DE, Jackson JK, Burt HM (2010) Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin. Biomacromolecules 12:145–155CrossRefGoogle Scholar
  92. 92.
    Zou J, Shi W, Wang J, Bo J (2005) Encapsulation and controlled release of a hydrophobic drug using a novel nanoparticle‐forming hyperbranched polyester. Macromol Biosci 5:662–668CrossRefGoogle Scholar
  93. 93.
    Radowski MR, Shukla A, von Berlepsch H, Böttcher C, Pickaert G, Rehage H, Haag R (2007) Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew Chem Int Ed 46:1265–1269CrossRefGoogle Scholar
  94. 94.
    Li N, Li N, Yi Q, Luo K, Guo C, Pan D, Gu Z (2014) Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 35:9529–9545CrossRefGoogle Scholar
  95. 95.
    Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10:767–776CrossRefGoogle Scholar
  96. 96.
    Pan D, Guo C, Luo K, Yi Q, Gu Z (2014) PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials 35:10080–10092CrossRefGoogle Scholar
  97. 97.
    Park JW, Jeon OC, Kim SK, Al-Hilal TA, Jin SJ, Moon HT, Yang VC, Kim SY, Byun Y (2010) High antiangiogenic and low anticoagulant efficacy of orally active low molecular weight heparin derivatives. J Control Release 148:317–326CrossRefGoogle Scholar
  98. 98.
    Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW (2010) Heparinized chitosan/poly(γ-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31:9320–9332CrossRefGoogle Scholar
  99. 99.
    Ornelas C, Pennell R, Liebes LF, Weck M (2011) Construction of a well-defined multifunctional dendrimer for theranostics. Org Lett 13:976–979CrossRefGoogle Scholar
  100. 100.
    Quan Q, Xie J, Gao H, Yang M, Zhang F, Liu G, Lin X, Wang A, Eden HS, Lee S (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 8:1669–1676CrossRefGoogle Scholar
  101. 101.
    Chen J, Yang M, Zhang Q, Cho EC, Cobley CM, Kim C, Glaus C, Wang LV, Welch MJ, Xia Y (2010) Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications. Adv Funct Mater 20:3684–3694CrossRefGoogle Scholar
  102. 102.
    Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924CrossRefGoogle Scholar
  103. 103.
    Liu Z, Liang X-J (2012) Nano-carbons as theranostics. Theranostics 2:235–237CrossRefGoogle Scholar
  104. 104.
    Sheng Z, Song L, Zheng J, Hu D, He M, Zheng M, Gao G, Gong P, Zhang P, Ma Y (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243CrossRefGoogle Scholar
  105. 105.
    Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44:841–841CrossRefGoogle Scholar
  106. 106.
    Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259:143–160CrossRefGoogle Scholar
  107. 107.
    Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal B, Tjarks W, Barth RF, Claffey K, Backer JM (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429CrossRefGoogle Scholar
  108. 108.
    Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579CrossRefGoogle Scholar
  109. 109.
    Yang W, Cheng Y, Xu T, Wang X (2009) Wen L-p: Targeting cancer cells with biotin–dendrimer conjugates. Eur J Med Chem 44:862–868CrossRefGoogle Scholar
  110. 110.
    Choi Y, Thomas T, Kotlyar A, Islam MT, Baker JR Jr (2005) Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol 12:35–43CrossRefGoogle Scholar
  111. 111.
    Zhu B, Han Y, Sun M, Bo Z (2007) Water-soluble dendronized polyfluorenes with an extremely high quantum yield in water. Macromolecules 40:4494–4500CrossRefGoogle Scholar
  112. 112.
    Wang G, Pu K-Y, Zhang X, Li K, Wang L, Cai L, Ding D, Lai Y-H, Liu B (2011) Star-shaped glycosylated conjugated oligomer for two-photon fluorescence imaging of live cells. Chem Mater 23:4428–4434CrossRefGoogle Scholar
  113. 113.
    Santra S, Kaittanis C, Perez JM (2010) Cytochrome C encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm 7:1209–1222CrossRefGoogle Scholar
  114. 114.
    Zhang C, Pan D, Luo K, Li N, Guo C, Zheng X, Gu Z (2014) Dendrimer-doxorubicin conjugate as enzyme-sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polym Chem 5:5227–5235CrossRefGoogle Scholar
  115. 115.
    Zhang C, Pan D, Luo K, She W, Guo C, Yang Y, Gu Z (2014) Peptide dendrimer–doxorubicin conjugate‐based nanoparticle as an enzyme‐responsive drug delivery system for cancer therapy. Adv Healthc Mater 8:1299–1308CrossRefGoogle Scholar
  116. 116.
    Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637CrossRefGoogle Scholar
  117. 117.
    Zhang Y, Lovell JF (2012) Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2:905CrossRefGoogle Scholar
  118. 118.
    Brasseur N, Brault D, Couvreur P (1991) Adsorption of hematoporphyrin onto polyalkylcyanoacrylate nanoparticles: carrier capacity and drug release. Int J Pharm 70:129–135CrossRefGoogle Scholar
  119. 119.
    Taratula O, Schumann C, Naleway MA, Pang AJ, Chon KJ, Taratula O (2013) A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm 10:3946–3958CrossRefGoogle Scholar
  120. 120.
    Ideta R, Tasaka F, Jang W-D, Nishiyama N, Zhang G-D, Harada A, Yanagi Y, Tamaki Y, Aida T, Kataoka K (2005) Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 5:2426–2431CrossRefGoogle Scholar
  121. 121.
    Kumar MS, Babu A, Murugesan R, Jeyasubramanian K (2012) Novel water soluble dendrimer nanocarrier for enhanced photodynamic efficacy of protoporphyrin IX. Nano Biomed Eng 4:132–138Google Scholar
  122. 122.
    Kojima C, Toi Y, Harada A, Kono K (2007) Preparation of poly (ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy. Bioconjug Chem 18:663–670CrossRefGoogle Scholar
  123. 123.
    Kono K, Nakashima S, Kokuryo D, Aoki I, Shimomoto H, Aoshima S, Maruyama K, Yuba E, Kojima C, Harada A (2011) Multi-functional liposomes having temperature-triggered release and magnetic resonance imaging for tumor-specific chemotherapy. Biomaterials 32:1387–1395CrossRefGoogle Scholar
  124. 124.
    Li X, Qian Y, Liu T, Hu X, Zhang G, You Y, Liu S (2011) Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 32:6595–6605CrossRefGoogle Scholar
  125. 125.
    Ardana A, Whittaker AK, Thurecht KJ (2014) PEG-based hyperbranched polymer theranostics: optimizing chemistries for improved bioconjugation. Macromolecules 47:5211–5219CrossRefGoogle Scholar
  126. 126.
    Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer‐targeted imaging and magnetically guided drug delivery. Adv Mater 20:478–483CrossRefGoogle Scholar
  127. 127.
    Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336:8–17CrossRefGoogle Scholar
  128. 128.
    Smejkalova D, Nešporová K, Huerta-Angeles G, Syrovátka J, Jirák D, Gálisová A, Velebny V (2014) Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles. Biomacromolecules 15:4012–4020CrossRefGoogle Scholar
  129. 129.
    Xie J, Jon S (2012) Magnetic nanoparticle-based theranostics. Theranostics 2:122–124CrossRefGoogle Scholar
  130. 130.
    Martin AL, Bernas LM, Rutt BK, Foster PJ, Gillies ER (2008) Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjug Chem 19:2375–2384CrossRefGoogle Scholar
  131. 131.
    Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-Colin S (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573CrossRefGoogle Scholar
  132. 132.
    Basly B, Felder‐Flesch D, Perriat P, Pourroy G, Bégin‐Colin S (2011) Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications. Contrast Media Mol Imaging 6:132–138CrossRefGoogle Scholar
  133. 133.
    Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2:1596–1610CrossRefGoogle Scholar
  134. 134.
    Canilho N, Kasëmi E, Schlüter AD, Ruokolainen J, Mezzenga R (2007) Real space imaging and molecular packing of dendronized polymer-lipid supramolecular complexes. Macromolecules 40:7609–7616CrossRefGoogle Scholar
  135. 135.
    Abu-Reziq R, Alper H, Wang D, Post ML (2006) Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J Am Chem Soc 128:5279–5282CrossRefGoogle Scholar
  136. 136.
    Pan B-F, Gao F, Ao L-M (2005) Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin. J Magn Magn Mater 293:252–258CrossRefGoogle Scholar
  137. 137.
    Zhu R, Jiang W, Pu Y, Luo K, Wu Y, He B, Gu Z (2011) Functionalization of magnetic nanoparticles with peptide dendrimers. J Mater Chem 21:5464–5474CrossRefGoogle Scholar
  138. 138.
    Walter A, Billotey C, Garofalo A, Ulhaq-Bouillet C, Lefèvre C, Taleb J, Laurent S, Vander Elst L, Muller RN, Lartigue L (2014) Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem Mater 26:5252–5264CrossRefGoogle Scholar
  139. 139.
    Jiang Y-H, Emau P, Cairns JS, Flanary L, Morton WR, McCarthy TD, Tsai C-C (2005) SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89. 6P in macaques. AIDS Res Hum Retrovir 21:207–213CrossRefGoogle Scholar
  140. 140.
    McCarthy TD, Karellas P, Henderson SA, Giannis M, O’Keefe DF, Heery G, Paull JR, Matthews BR, Holan G (2005) Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2:312–318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina

Personalised recommendations