Advertisement

Dendrimer-Based Nanodevices as Contrast Agents for MR Imaging Applications

  • Wenjie Sun
  • Jingchao Li
  • Mingwu ShenEmail author
  • Xiangyang ShiEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 6)

Abstract

Dendrimers possess unique three-dimensional architectures, highly branched macromolecular characteristics, and abundant terminal functional groups. These properties of dendrimers afford their uses as a versatile nanoplatform to design multifunctional nanodevices for various biomedical applications, especially for magnetic resonance (MR) imaging of different biological systems. The periphery of dendrimers can be linked with targeting ligands and imaging agents, while the unique dendrimer interior and surface functionality render their uses to form dendrimer-entrapped metal nanoparticles (NPs) or dendrimer-assembled magnetic iron oxide NPs. The formed dendrimer-based contrast agents can be used for various MR imaging applications, including T1-weighted MR, T2-weighted MR, MR/computed tomography, MR/fluorescence imaging of blood pool, animal organs, and tumors. In particular, this chapter mainly introduces some recent advances of dendrimer-based contrast agents for MR imaging of cancer.

Keywords

Dendrimers Nanodevices Contrast agents MR imaging Dual-modal imaging 

Notes

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (21273032), the Sino-German Center for Research Promotion (GZ899), the Ph.D. Programs Foundation of Ministry of Education of China (20130075110004), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of High Learning.

References

  1. 1.
    Helms B, Meijer E (2006) Dendrimers at work. Science 313(5789):929–930CrossRefGoogle Scholar
  2. 2.
    Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132CrossRefGoogle Scholar
  3. 3.
    Tomalia DA (2004) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichimica Acta 37(2):39–57Google Scholar
  4. 4.
    Cheng Y, Zhao L, Li Y, Xu T (2011) Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40(5):2673–2703CrossRefGoogle Scholar
  5. 5.
    Esfand R, Tomalia DA (2001) Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436CrossRefGoogle Scholar
  6. 6.
    Kannaiyan D, Imae T (2009) pH-dependent encapsulation of pyrene in PPI-core: PAMAM-shell dendrimers. Langmuir 25(9):5282–5285CrossRefGoogle Scholar
  7. 7.
    Karatasos K, Adolf D, Davies G (2001) Statics and dynamics of model dendrimers as studied by molecular dynamics simulations. J Chem Phys 115(11):5310–5318CrossRefGoogle Scholar
  8. 8.
    Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 64(6):571–588CrossRefGoogle Scholar
  9. 9.
    Zhang WL, Li N, Huang J, Yu JH, Wang DX, Li YP, Liu SY (2010) Gadolinium‐conjugated FA‐PEG‐PAMAM‐COOH nanoparticles as potential tumor‐targeted circulation‐prolonged macromolecular MRI contrast agents. J Appl Polym Sci 118(3):1805–1814Google Scholar
  10. 10.
    Wen S, Liu H, Cai H, Shen M, Shi X (2013) Targeted and pH‐responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer‐modified multi‐walled carbon nanotubes. Adv Healthcare Mater 2(9):1267–1276CrossRefGoogle Scholar
  11. 11.
    Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I, Baker JR (2007) Dendrimer‐entrapped gold nanoparticles as a platform for cancer‐cell targeting and imaging. Small 3(7):1245–1252CrossRefGoogle Scholar
  12. 12.
    Longmire MR, Ogawa M, Choyke PL, Kobayashi H (2014) Dendrimers as high relaxivity MR contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(2):155–162CrossRefGoogle Scholar
  13. 13.
    Qiao Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym 44:1–27Google Scholar
  14. 14.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRefGoogle Scholar
  15. 15.
    Schiffmann R, van der Knaap MS (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72(8):750–759CrossRefGoogle Scholar
  16. 16.
    Serres S, Soto MS, Hamilton A, McAteer MA, Carbonell WS, Robson MD, Ansorge O, Khrapitchev A, Bristow C, Balathasan L (2012) Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci 109(17):6674–6679CrossRefGoogle Scholar
  17. 17.
    Langereis S, Dirksen A, Hackeng TM, van Genderen MH, Meijer E (2007) Dendrimers and magnetic resonance imaging. New J Chem 31(7):1152–1160CrossRefGoogle Scholar
  18. 18.
    Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedicalapplications. ACS Appl Mater Interfaces 5(5):1722–1731CrossRefGoogle Scholar
  19. 19.
    Alexiou C, Jurgons R, Seliger C, Iro H (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6(9–10):2762–2768CrossRefGoogle Scholar
  20. 20.
    Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148CrossRefGoogle Scholar
  21. 21.
    Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10CrossRefGoogle Scholar
  22. 22.
    Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Laird Forrest M, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194CrossRefGoogle Scholar
  23. 23.
    Mahajan S, Koul V, Choudhary V, Shishodia G, Bharti AC (2013) Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging. Nanotechnology 24(1):015603CrossRefGoogle Scholar
  24. 24.
    Hardie AD, Naik M, Hecht EM, Chandarana H, Mannelli L, Babb JS, Taouli B (2010) Diagnosis of liver metastases: value of diffusion-weighted MRI compared with gadolinium-enhanced MRI. Eur Radiol 20(6):1431–1441CrossRefGoogle Scholar
  25. 25.
    Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G (2013) Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34(5):1570–1580CrossRefGoogle Scholar
  26. 26.
    Yang H, Zhuang Y, Hu H, Du X, Zhang C, Shi X, Wu H, Yang S (2010) Silica‐coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells. Adv Funct Mater 20(11):1733–1741CrossRefGoogle Scholar
  27. 27.
    Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem 119(28):5493–5497CrossRefGoogle Scholar
  28. 28.
    Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JR Jr (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly (amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9(42):5712–5720CrossRefGoogle Scholar
  29. 29.
    Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31(13):3667–3673CrossRefGoogle Scholar
  30. 30.
    Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499CrossRefGoogle Scholar
  31. 31.
    Zhu D, Liu F, Ma L, Liu D, Wang Z (2013) Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 14(5):10591–10607CrossRefGoogle Scholar
  32. 32.
    Ge S, Shi X, Sun K, Li C, Uher C, Baker JR Jr, Banaszak Holl MM, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113(31):13593–13599CrossRefGoogle Scholar
  33. 33.
    Li J, He Y, Sun W, Luo Y, Cai H, Pan Y, Shen M, Xia J, Shi X (2014) Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35(11):3666–3677CrossRefGoogle Scholar
  34. 34.
    Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34(33):8382–8392CrossRefGoogle Scholar
  35. 35.
    Wiener E, Brechbiel M, Brothers H, Magin R, Gansow O, Tomalia D, Lauterbur P (1994) Dendrimer‐based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31(1):1–8CrossRefGoogle Scholar
  36. 36.
    Kobayashi H, Jo SK, Kawamoto S, Yasuda H, Hu X, Knopp MV, Brechbiel MW, Choyke PL, Star RA (2004) Polyamine dendrimer‐based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J Magn Reson Imaging 20(3):512–518CrossRefGoogle Scholar
  37. 37.
    Kobayashi H, Kawamoto S, Jo S-K, Bryant HL, Brechbiel MW, Star RA (2003) Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjugate Chem 14(2):388–394CrossRefGoogle Scholar
  38. 38.
    Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57(15):2271–2286CrossRefGoogle Scholar
  39. 39.
    Kobayashi H, Saga T, Kawamoto S, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) Dynamic micro-magnetic resonance imaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd)64. Cancer Res 61(13):4966–4970Google Scholar
  40. 40.
    Kobayashi H, Kawamoto S, Choyke PL, Sato N, Knopp MV, Star RA, Waldmann TA, Tagaya Y, Brechbiel MW (2003) Comparison of dendrimer‐based macromolecular contrast agents for dynamic micro‐magnetic resonance lymphangiography. Magn Reson Med 50(4):758–766CrossRefGoogle Scholar
  41. 41.
    Longmire M, Choyke PL, Kobayashi H (2008) Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem 8(14):1180–1186CrossRefGoogle Scholar
  42. 42.
    Sena LM, Fishman SJ, Jenkins KJ, Xu H, Brechbiel MW, Regino CA, Kosaka N, Bernardo M, Choyke PL, Kobayashi H (2010) Magnetic resonance lymphangiography with a nano-sized gadolinium-labeled dendrimer in small and large animal models. Nanomedicine 5(8):1183–1191CrossRefGoogle Scholar
  43. 43.
    Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) Positive effects of polyethylene glycol conjugation to generation‐4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med 46(4):781–788CrossRefGoogle Scholar
  44. 44.
    He X-H, Shaw P-C, Tam S-C (1999) Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation. Life Sci 65(4):355–368CrossRefGoogle Scholar
  45. 45.
    Margerum LD, Campion BK, Koo M, Shargill N, Lai J-J, Marumoto A, Christian Sontum P (1997) Gadolinium (III) DO3A macrocycles and polyethylene glycol coupled to dendrimers effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J Alloys Compd 249(1):185–190CrossRefGoogle Scholar
  46. 46.
    Kono K, Kojima C, Hayashi N, Nishisaka E, Kiura K, Watarai S, Harada A (2008) Preparation and cytotoxic activity of poly (ethylene glycol)-modified poly (amidoamine) dendrimers bearing adriamycin. Biomaterials 29(11):1664–1675CrossRefGoogle Scholar
  47. 47.
    Haba Y, Harada A, Takagishi T, Kono K (2005) Synthesis of biocompatible dendrimers with a peripheral network formed by linking of polymerizable groups. Polymer 46(6):1813–1820CrossRefGoogle Scholar
  48. 48.
    Kojima C, Turkbey B, Ogawa M, Bernardo M, Regino CA, Bryant LH Jr, Choyke PL, Kono K, Kobayashi H (2011) Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics. Nanomed-Nanotechnol Biol Med 7(6):1001–1008CrossRefGoogle Scholar
  49. 49.
    Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242(3):647–649CrossRefGoogle Scholar
  50. 50.
    Lu Z-R, Mohs AM, Zong Y, Feng Y (2006) Polydisulfide Gd (III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents. Int J Nanomed 1(1):31–40CrossRefGoogle Scholar
  51. 51.
    Lu ZR, Wu X (2010) Polydisulfide‐based biodegradable macromolecular magnetic resonance imaging contrast agents. Isr J Chem 50(2):220–232CrossRefGoogle Scholar
  52. 52.
    Huang C-H, Nwe K, Al Zaki A, Brechbiel MW, Tsourkas A (2012) Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS Nano 6(11):9416–9424CrossRefGoogle Scholar
  53. 53.
    Luo K, Liu G, She W, Wang Q, Wang G, He B, Ai H, Gong Q, Song B, Gu Z (2011) Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials 32(31):7951–7960CrossRefGoogle Scholar
  54. 54.
    Lim J, Turkbey B, Bernardo M, Bryant LH Jr, Garzoni M, Pavan GM, Nakajima T, Choyke PL, Simanek EE, Kobayashi H (2012) Gadolinium MRI contrast agents based on triazine dendrimers: relaxivity and in vivo pharmacokinetics. Bioconjugate Chem 23(11):2291–2299CrossRefGoogle Scholar
  55. 55.
    Lim J, Guo Y, Rostollan CL, Stanfield J, Hsieh J-T, Sun X, Simanek EE (2008) The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers. Mol Pharmaceut 5(4):540–547CrossRefGoogle Scholar
  56. 56.
    Langereis S, De Lussanet QG, Van Genderen MH, Backes WH, Meijer E (2004) Multivalent contrast agents based on gadolinium-diethylenetriaminepentaacetic acid-terminated poly (propylene imine) dendrimers for magnetic resonance imaging. Macromolecules 37(9):3084–3091CrossRefGoogle Scholar
  57. 57.
    Langereis S, de Lussanet QG, van Genderen MH, Meijer E, Beets‐Tan RG, Griffioen AW, van Engelshoven J, Backes WH (2006) Evaluation of Gd (III) DTPA‐terminated poly (propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 19(1):133–141CrossRefGoogle Scholar
  58. 58.
    de Lussanet QG, Langereis S, Beets-Tan RG, van Genderen MH, Griffioen AW, van Engelshoven JM, Backes WH (2005) Dynamic contrast-enhanced MR imaging kinetic parameters and molecular weight of dendritic contrast agents in tumor angiogenesis in mice. Radiology 235(1):65–72CrossRefGoogle Scholar
  59. 59.
    Artemov D (2003) Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90(3):518–524MathSciNetCrossRefGoogle Scholar
  60. 60.
    Kobayashi H, Sato N, Saga T, Nakamoto Y, Ishimori T, Toyama S, Togashi K, Konishi J, Brechbiel MW (2000) Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med 27(9):1334–1339CrossRefGoogle Scholar
  61. 61.
    Xu H, Regino CA, Koyama Y, Hama Y, Gunn AJ, Bernardo M, Kobayashi H, Choyke PL, Brechbiel MW (2007) Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjugate Chem 18(5):1474–1482CrossRefGoogle Scholar
  62. 62.
    Han L, Li J, Huang S, Huang R, Liu S, Hu X, Yi P, Shan D, Wang X, Lei H (2011) Peptide-conjugated polyamidoamine dendrimer as a nanoscale tumor-targeted T1 magnetic resonance imaging contrast agent. Biomaterials 32(11):2989–2998CrossRefGoogle Scholar
  63. 63.
    Tan M, Wu X, Jeong E-K, Chen Q, Lu Z-R (2010) Peptide-targeted nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance cancer molecular imaging. Biomacromolecules 11(3):754–761CrossRefGoogle Scholar
  64. 64.
    Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, Kotlyar A, East AT, Baker JR (2008) Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomed 3(2):201–210CrossRefGoogle Scholar
  65. 65.
    Wolfenden ML, Cloninger MJ (2005) Mannose/glucose-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. J Am Chem Soc 127(35):12168–12169CrossRefGoogle Scholar
  66. 66.
    van Baal I, Malda H, Synowsky SA, van Dongen JL, Hackeng TM, Merkx M, Meijer E (2005) Multivalent peptide and protein dendrimers using native chemical ligation. Angew Chem Int Ed 44(32):5052–5057CrossRefGoogle Scholar
  67. 67.
    Choi Y, Mecke A, Orr BG, Banaszak Holl MM, Baker JR (2004) DNA-directed synthesis of generation 7 and 5 PAMAM dendrimer nanoclusters. Nano Lett 4(3):391–397CrossRefGoogle Scholar
  68. 68.
    Antony AC (1992) The biological chemistry of folate receptors. Blood 79(11):2807–2820Google Scholar
  69. 69.
    Chen W-T, Thirumalai D, Shih TT-F, Chen R-C, Tu S-Y, Lin C-I, Yang P-C (2010) Dynamic contrast-enhanced folate-receptor-targeted MR imaging using a Gd-loaded PEG-dendrimer-folate conjugate in a mouse xenograft tumor model. Mol Imaging Biol 12(2):145–154CrossRefGoogle Scholar
  70. 70.
    Kobayashi H, Kawamoto S, Saga T, Sato N, Ishimori T, Konishi J, Ono K, Togashi K, Brechbiel MW (2001) Avidin-dendrimer-(1B4M-Gd) 254: a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjugate Chem 12(4):587–593CrossRefGoogle Scholar
  71. 71.
    Park J, Lee JJ, Jung JC, Yu DY, Oh C, Ha S, Kim TJ, Chang Y (2008) Gd‐DOTA conjugate of RGD as a potential tumor‐targeting MRI contrast agent. ChemBioChem 9(17):2811–2813CrossRefGoogle Scholar
  72. 72.
    Lee JH, Silva AC, Merkle H, Koretsky AP (2005) Manganese‐enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose‐dependent and temporal evolution of T1 contrast. Magn Reson Med 53(3):640–648CrossRefGoogle Scholar
  73. 73.
    Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48(2):321–324CrossRefGoogle Scholar
  74. 74.
    Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W (2014) Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc 136(32):11220–11223CrossRefGoogle Scholar
  75. 75.
    Hu H, Dai A, Sun J, Li X, Gao F, Wu L, Fang Y, Yang H, An L, Wu H (2013) Aptamer-conjugated Mn3O4@ SiO2 core-shell nanoprobes for targeted magnetic resonance imaging. Nanoscale 5(21):10447–10454CrossRefGoogle Scholar
  76. 76.
    Pan D, Schmieder AH, Wickline SA, Lanza GM (2011) Manganese-based MRI contrast agents: past, present, and future. Tetrahedron 67(44):8431–8444CrossRefGoogle Scholar
  77. 77.
    Ye Z, Jeong EK, Wu X, Tan M, Yin S, Lu ZR (2012) Polydisulfide manganese (II) complexes as non‐gadolinium biodegradable macromolecular MRI contrast agents. J Magn Reson Imaging 35(3):737–744CrossRefGoogle Scholar
  78. 78.
    Bertin A, Steibel J, Michou-Gallani A-I, Gallani J-L, Felder-Flesch D (2009) Development of a dendritic manganese-enhanced magnetic resonance imaging (MEMRI) contrast agent: synthesis, toxicity (in vitro) and relaxivity (in vitro, in vivo) studies. Bioconjugate Chem 20(4):760–767CrossRefGoogle Scholar
  79. 79.
    Nguyen TH, Bryant H, Shapsa A, Street H, Mani V, Fayad ZA, Frank JA, Tsimikas S, Briley-Saebo KC (2015) Manganese G8 dendrimers targeted to oxidation-specific epitopes: In vivo MR imaging of atherosclerosis. J Magn Reson Imaging 41(3):797–805Google Scholar
  80. 80.
    Tan M, Wu X, Jeong E-K, Chen Q, Parker DL, Lu Z-R (2010) An effective targeted nanoglobular manganese (II) chelate conjugate for magnetic resonance molecular imaging of tumor extracellular matrix. Mol Pharmaceut 7(4):936–943CrossRefGoogle Scholar
  81. 81.
    Tan M, Ye Z, Jeong E-K, Wu X, Parker DL, Lu Z-R (2011) Synthesis and evaluation of nanoglobular macrocyclic Mn (II) chelate conjugates as non-gadolinium (III) MRI contrast agents. Bioconjugate Chem 22(5):931–937CrossRefGoogle Scholar
  82. 82.
    Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T (2001) Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater 13(6):2201–2209CrossRefGoogle Scholar
  83. 83.
    Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Landmark KJ, Baker JR Jr (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater 20(9):1671–1678CrossRefGoogle Scholar
  84. 84.
    Wang SH, Shi X, Van Antwerp M, Cao Z, Swanson SD, Bi X, Baker JR Jr (2007) Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater 17(16):3043–3050CrossRefGoogle Scholar
  85. 85.
    Lee IH, Bulte JWM, Schweinhardt P, Douglas T, Trifunovski A, Hofstetter C, Olson L, Spenger C (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187(2):509–516CrossRefGoogle Scholar
  86. 86.
    Tunici P, Bulte JWM, Bruzzone MG, Poliani PL, Cajola L, Grisoli M, Douglas T, Finocchiaro G (2006) Brain engraftment and therapeutic potential of stem/progenitor cells derived from mouse skin. J Gene Med 8(4):506–513CrossRefGoogle Scholar
  87. 87.
    Aime S, Crich SG, Gianolio E, Giovenzana GB, Tei L, Terreno E (2006) High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord Chem Rev 250(11–12):1562–1579CrossRefGoogle Scholar
  88. 88.
    Ferrauto G, Castelli DD, Di Gregorio E, Langereis S, Burdinski D, Grull H, Terreno E, Aime S (2014) Lanthanide-loaded erythrocytes as highly sensitive chemical exchange saturation transfer MRI contrast agents. J Am Chem Soc 136(2):638–641CrossRefGoogle Scholar
  89. 89.
    Klemm PJ, Floyd WC III, Andolina CM, Frechet JMJ, Raymond KN (2012) Conjugation to biocompatible dendrimers increases lanthanide T2 relaxivity of hydroxypyridinone complexes for magnetic resonance imaging. Eur J Inorg Chem 12:2108–2114CrossRefGoogle Scholar
  90. 90.
    Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl Mater Interfaces 5(20):10357–10366CrossRefGoogle Scholar
  91. 91.
    Jiang L, Zhou Q, Mu K, Xie H, Zhu Y, Zhu W, Zhao Y, Xu H, Yang X (2013) pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials 34(30):7418–7428CrossRefGoogle Scholar
  92. 92.
    Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, Kang JH, Lim SM, Park S, Song R (2013) RGD peptide-conjugated multimodal NaGdF4: Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J Nucl Med 54(1):96–103CrossRefGoogle Scholar
  93. 93.
    Kryza D, Taleb J, Janier M, Marmuse L, Miladi I, Bonazza P, Louis C, Perriat P, Roux S, Tillement O (2011) Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/optical imaging and theragnostic agent. Bioconjugate Chem 22(6):1145–1152CrossRefGoogle Scholar
  94. 94.
    Liu H, Wang H, Guo R, Cao X, Zhao J, Luo Y, Shen M, Zhang G, Shi X (2010) Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polym Chem 1(10):1677–1683CrossRefGoogle Scholar
  95. 95.
    Liu H, Xu Y, Wen S, Zhu J, Zheng L, Shen M, Zhao J, Zhang G, Shi X (2013) Facile hydrothermal synthesis of low generation dendrimer-stabilized gold nanoparticles for in vivo computed tomography imaging applications. Polym Chem 4(6):1788–1795CrossRefGoogle Scholar
  96. 96.
    Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119CrossRefGoogle Scholar
  97. 97.
    Chen Q, Li K, Wen S, Liu H, Peng C, Cai H, Shen M, Zhang G, Shi X (2013) Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 34(21):5200–5209CrossRefGoogle Scholar
  98. 98.
    Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, Zhang G, Shi X (2012) Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22(30):15110–15120CrossRefGoogle Scholar
  99. 99.
    Feng J, Chang D, Wang Z, Shen B, Yang J, Jiang Y, Ju S, He N (2014) A FITC-doped silica coated gold nanocomposite for both in vivo X-ray CT and fluorescence dual modal imaging. RSC Adv 4(94):51950–51959CrossRefGoogle Scholar
  100. 100.
    Karreman MA, Agronskaia AV, van Donselaar EG, Vocking K, Fereidouni F, Humbel BM, Verrips CT, Verkleij AJ, Gerritsen HC (2012) Optimizing immuno-labeling for correlative fluorescence and electron microscopy on a single specimen. J Struct Biol 180(2):382–386CrossRefGoogle Scholar
  101. 101.
    Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC (2014) The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20:103–111CrossRefGoogle Scholar
  102. 102.
    Lingyu J, Qing Z, Ketao M, Hui X, Yanhong Z, Wenzhen Z, Yanbing Z, Huibi X, Xiangliang Y (2013) pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials 34(30):7418–7428CrossRefGoogle Scholar
  103. 103.
    Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6(7):1459–1463CrossRefGoogle Scholar
  104. 104.
    Caminade A-M, Turrin C-O (2014) Dendrimers for drug delivery. J Mater Chem B 2(26):4055–4066CrossRefGoogle Scholar
  105. 105.
    Fu F, Wu Y, Zhu J, Wen S, Shen M, Shi X (2014) Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: Investigating the role played by PEG spacer. ACS Appl Mater Interfaces 6(18):16416–16425CrossRefGoogle Scholar
  106. 106.
    Zhu J, Shi X (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1(34):4199–4211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations