Advertisement

Organic Dye-Loaded Nanoparticles for Imaging-Guided Cancer Therapy

  • Zonghai Sheng
  • Lintao CaiEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 6)

Abstract

Recently, organic dye-based imaging-guided cancer therapy has attracted much attention in the field of cancer nanomedicine. As a small molecular compound, organic dye has an exact molecular weight and chemical structure. It can be not only used as fluorescence and photoacoustic imaging probes but also applied as therapeutic agents for photodynamic and photothermal therapy. Functionalized with the different delivery nanomaterials, organic dyes exhibit a long halftime and high tumor targeting and promoted stability. In this chapter, we review the development of organic dyes for cancer imaging and therapy applications in decades and illustrate the use of functional nanomaterials as organic dye delivery systems for enhancing their stability and tumor targeting, which show the bright prospects and challenges toward organic dye-based imaging-guided cancer therapy.

Keywords

Organic dye Imaging-guided therapy Theranostics Fluorescence imaging Photoacoustic imaging Photodynamic therapy Photothermal therapy Photoimmunotherapy 

References

  1. 1.
    Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y (2013) Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J Pharm Sci 102:6–28CrossRefGoogle Scholar
  2. 2.
    Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138CrossRefGoogle Scholar
  3. 3.
    Frenette M, Hatamimoslehabadi M, Bellinger-Buckley S, Laoui S, La J, Bag S, Mallidi S, Hasan T, Bouma B, Yelleswarapu C, Rochford J (2014) Shining light on the dark side of imaging: excited state absorption enhancement of a Bis-styryl BODIPY photoacoustic contrast agent. J Am Chem Soc 136:15853–15856CrossRefGoogle Scholar
  4. 4.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634CrossRefGoogle Scholar
  5. 5.
    Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462CrossRefGoogle Scholar
  6. 6.
    Sheng Z, Song L, Zheng J, Hu D, He M, Zheng M, Gao G, Gong P, Zhang P, Ma Y, Cai L (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243CrossRefGoogle Scholar
  7. 7.
    Sheng Z, Hu D, Xue M, He M, Gong P, Cai L (2013) Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett 5:145–150CrossRefGoogle Scholar
  8. 8.
    Mitsunaga M, Nakajima T, Sano K, Kramer-Marek G, Choyke PL, Kobayashi H (2012) Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer 12:345CrossRefGoogle Scholar
  9. 9.
    Jiang C, Cheng H, Yuan A, Tang X, Wu J, Hu Y (2014) Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. doi: 10.1016/j.actbio.2014.11.041 Google Scholar
  10. 10.
    Cheng C, He WW, Gong H, Wang C, Chen Q, Cheng ZP, Liu Z (2013) PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Adv Fun Mater 23:5893–5902CrossRefGoogle Scholar
  11. 11.
    Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65:1964–2015CrossRefGoogle Scholar
  12. 12.
    Wu X, Zhang F, Chen R, Zheng W, Yang X (2014) Recent advances in imaging-guided interventions for prostate cancers. Cancer Lett 349:114–119CrossRefGoogle Scholar
  13. 13.
    Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10:507–518CrossRefGoogle Scholar
  14. 14.
    Rahmathulla G, Recinos PF, Kamian K, Mohammadi AM, Ahluwalia MS, Barnett GH (2014) MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology 87:67–82CrossRefGoogle Scholar
  15. 15.
    van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315–1319CrossRefGoogle Scholar
  16. 16.
    Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie S (2010) Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 82:9058–9065CrossRefGoogle Scholar
  17. 17.
    Madajewski B, Judy BF, Mouchli A, Kapoor V, Holt D, Wang MD, Nie S, Singhal S (2012) Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease. Clin Cancer Res 18:5741–5751CrossRefGoogle Scholar
  18. 18.
    Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685–1691CrossRefGoogle Scholar
  19. 19.
    Nakajima T, Sano K, Choyke PL, Kobayashi H (2013) Improving the efficacy of photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics 3:357–365CrossRefGoogle Scholar
  20. 20.
    Mitsunaga M, Nakajima T, Sano K, Choyke PL, Kobayashi H (2012) Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate. Bioconjug Chem 23:604–609CrossRefGoogle Scholar
  21. 21.
    Nakajima T, Sano K, Mitsunaga M, Choyke PL, Kobayashi H (2012) Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Res 72:4622–4628CrossRefGoogle Scholar
  22. 22.
    Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl 41:3130–3146CrossRefGoogle Scholar
  23. 23.
    Altinoğlu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2:2075–2084CrossRefGoogle Scholar
  24. 24.
    Barth BM, Sharma R, Altinoğlu EI, Morgan TT, Shanmugavelandy SS, Kaiser JM, McGovern C, Matters GL, Smith JP, Kester M, Adair JH (2010) Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. ACS Nano 4:1279–1287CrossRefGoogle Scholar
  25. 25.
    Barth BM, I Altinoğlu E, Shanmugavelandy SS, Kaiser JM, Crespo-Gonzalez D, DiVittore NA, McGovern C, Goff TM, Keasey NR, Adair JH, Loughran TP Jr, Claxton DF, Kester M (2011) Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano 5:5325–5337CrossRefGoogle Scholar
  26. 26.
    Yu J, Yaseen MA, Anvari B, Wong MS (2007) Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chem Mater 19:1277–1284CrossRefGoogle Scholar
  27. 27.
    Yu J, Javier D, Yaseen MA, Nitin N, Richards-Kortum R, Anvari B, Wong MS (2010) Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J Am Chem Soc 132:1929–1938CrossRefGoogle Scholar
  28. 28.
    Yaseen MA, Yu J, Jung B, Wong MS, Anvari B (2009) Biodistribution of encapsulated indocyanine green in healthy mice. Mol Pharm 6(5):1321–1332CrossRefGoogle Scholar
  29. 29.
    Yaseen MA, Yu J, Wong MS, Anvari B (2008) In-vivo fluorescence imaging of mammalian organs using charge-assembled mesocapsule constructs containing indocyanine green. Opt Express 16:20577–20587CrossRefGoogle Scholar
  30. 30.
    Quan B, Choi K, Kim YH, Kang KW, Chung DS (2012) Near infrared dye indocyanine green doped silica nanoparticles for biological imaging. Talanta 99:387–393CrossRefGoogle Scholar
  31. 31.
    Sharma P, Bengtsson NE, Walter GA, Sohn HB, Zhou G, Iwakuma N, Zeng H, Grobmyer SR, Scott EW, Moudgil BM (2012) Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging. Small 8:2856–2868CrossRefGoogle Scholar
  32. 32.
    Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo LW (2009) Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Funct Mater 19:215–222CrossRefGoogle Scholar
  33. 33.
    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823CrossRefGoogle Scholar
  34. 34.
    Murakami M, Cabral H, Matsumoto Y, Wu S, Kano MR, Yamori T, Nishiyama N, Kataoka K (2011) Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 3:64ra2CrossRefGoogle Scholar
  35. 35.
    Matsumura Y (2011) Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 63:184–192CrossRefGoogle Scholar
  36. 36.
    Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 60:899–914CrossRefGoogle Scholar
  37. 37.
    Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648CrossRefGoogle Scholar
  38. 38.
    Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRefGoogle Scholar
  39. 39.
    Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6:714–729Google Scholar
  40. 40.
    Wang R, Xiao R, Zeng Z, Xu L, Wang J (2012) Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine 7:4185–4198Google Scholar
  41. 41.
    Chiu SJ, Marcucci G, Lee RJ (2006) Efficient delivery of an antisense oligodeoxyribonucleotide formulated in folate receptor-targeted liposomes. Anticancer Res 26:1049–1056Google Scholar
  42. 42.
    Yang X, Koh CG, Liu S, Pan X, Santhanam R, Yu B, Peng Y, Pang J, Golan S, Talmon Y, Jin Y, Muthusamy N, Byrd JC, Chan KK, Lee LJ, Marcucci G, Lee RJ (2009) Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol Pharm 6:221–230CrossRefGoogle Scholar
  43. 43.
    Xiong XB, Huang Y, Lu WL, Zhang X, Zhang H, Nagai T, Zhang Q (2005) Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo. J Pharm Sci 94:1782–1793CrossRefGoogle Scholar
  44. 44.
    Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763CrossRefGoogle Scholar
  45. 45.
    Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, Sheng Z, Ma Y, Cai L (2012) Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 33:5603–5609CrossRefGoogle Scholar
  46. 46.
    Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L (2013) Single-step assembly of DOX/ICG loaded lipid – polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7:2056–2067CrossRefGoogle Scholar
  47. 47.
    Zhao P, Zheng M, Yue C, Luo Z, Gong P, Gao G, Sheng Z, Zheng C, Cai L (2014) Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials 35:6037–6046CrossRefGoogle Scholar
  48. 48.
    Zheng X, Zhou F, Wu B, Chen WR, Xing D (2012) Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Mol Pharm 9:514–522CrossRefGoogle Scholar
  49. 49.
    Zheng X, Xing D, Zhou F, Wu B, Chen WR (2011) Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Mol Pharm 8:447–456CrossRefGoogle Scholar
  50. 50.
    Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, Inoue S (1990) Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 50:1693–1700Google Scholar
  51. 51.
    Chen H, Xiao L, Anraku Y, Mi P, Liu X, Cabral H, Inoue A, Nomoto T, Kishimura A, Nishiyama N, Kataoka K (2014) Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer. J Am Chem Soc 136:157–163CrossRefGoogle Scholar
  52. 52.
    Osada K, Christie RJ, Kataoka K (2009) Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface 3:S325–S339CrossRefGoogle Scholar
  53. 53.
    Yang H, Mao H, Wan Z, Zhu A, Guo M, Li Y, Li X, Wan J, Yang X, Shuai X, Chen H (2013) Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 34:9124–9133CrossRefGoogle Scholar
  54. 54.
    Guo M, Mao H, Li Y, Zhu A, He H, Yang H, Wang Y, Tian X, Ge C, Peng Q, Wang X, Yang X, Chen X, Liu G, Chen H (2014) Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35:4656–4666CrossRefGoogle Scholar
  55. 55.
    Wan Z, Mao H, Guo M, Li Y, Zhu A, Yang H, He H, Shen J, Zhou L, Jiang Z, Ge C, Chen X, Yang X, Liu G, Chen H (2014) Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication. Theranostics 4:399–411CrossRefGoogle Scholar
  56. 56.
    Zhang L, Zhang R, Somasundaran P (2006) Adsorption of mixtures of nonionic sugar-based surfactants with other surfactants at solid/liquid interfaces II. Adsorption of n-dodecyl-beta-D-maltoside with a cationic surfactant and a nonionic ethoxylated surfactant on solids. J Colloid Interface Sci 302:25–31CrossRefGoogle Scholar
  57. 57.
    Kirchherr AK, Briel A, Mäder K (2009) Stabilization of indocyanine green by encapsulation within micellar systems. Mol Pharm 6:480–491CrossRefGoogle Scholar
  58. 58.
    Musacchio T, Laquintana V, Latrofa A, Trapani G, Torchilin VP (2009) PEG-PE micelles loaded with paclitaxel and surface-modified by a PBR-ligand: synergistic anticancer effect. Mol Pharm 6:468–479CrossRefGoogle Scholar
  59. 59.
    Deng J, Gao N, Wang Y, Yi H, Fang S, Ma Y, Cai L (2012) Self-assembled cationic micelles based on PEG-PLL-PLLeu hybrid polypeptides as highly effective gene vectors. Biomacromolecules 13:3795–3804CrossRefGoogle Scholar
  60. 60.
    Wu L, Fang S, Shi S, Deng J, Liu B, Cai L (2013) Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Biomacromolecules 14:3027–3033CrossRefGoogle Scholar
  61. 61.
    Pitto-Barry A, Barry NPE (2014) Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalization and clinical advances. Polym Chem 5:3291–3297CrossRefGoogle Scholar
  62. 62.
    Kim TH, Chen Y, Mount CW, Gombotz WR, Li X, Pun SH (2010) Evaluation of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive near-infrared tumor imaging. Pharm Res 27:1900–1913CrossRefGoogle Scholar
  63. 63.
    Xu RX, Huang J, Xu JS, Sun D, Hinkle GH, Martin EW, Povoski SP (2009) Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. J Biomed Opt 14:034020CrossRefGoogle Scholar
  64. 64.
    Patel RH, Wadajkar AS, Patel NL, Kavuri VC, Nguyen KT, Liu H (2012) Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J Biomed Opt 17:046003CrossRefGoogle Scholar
  65. 65.
    Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J (2013) RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7:4830–4837CrossRefGoogle Scholar
  66. 66.
    Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315CrossRefGoogle Scholar
  67. 67.
    Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova MA, Zhang G, Lee S, Leapman R, Chen X (2011) Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett 11:814–819CrossRefGoogle Scholar
  68. 68.
    Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X (2014) H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A 111:14900–14905CrossRefGoogle Scholar
  69. 69.
    Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G, Fei B, Chen X, Xu B, Xie J (2013) Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano 7:6988–6996CrossRefGoogle Scholar
  70. 70.
    Garcia AM, Alarcon E, Muñoz M, Scaiano JC, Edwards AM, Lissi E (2011) Photophysical behaviour and photodynamic activity of zinc phthalocyanines associated to liposomes. Photochem Photobiol Sci 10:507–514CrossRefGoogle Scholar
  71. 71.
    Huang P, Rong P, Jin A, Yan X, Zhang MG, Lin J, Hu H, Wang Z, Yue X, Li W, Niu G, Zeng W, Wang W, Zhou K, Chen X (2014) Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv Mater 26:6401–6408CrossRefGoogle Scholar
  72. 72.
    Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183CrossRefGoogle Scholar
  73. 73.
    Kratz F, Elsadek B (2012) Clinical impact of serum proteins on drug delivery. J Control Release 161:429–445CrossRefGoogle Scholar
  74. 74.
    Kratz F (2014) A clinical update of using albumin as a drug vehicle – a commentary. J Control Release 190:331–336CrossRefGoogle Scholar
  75. 75.
    Chen Q, Liang C, Wang X, He J, Li Y, Liu Z (2014) An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials 35:9355–9362CrossRefGoogle Scholar
  76. 76.
    Chen Q, Wang C, Zhan Z, He W, Cheng Z, Li Y, Liu Z (2014) Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials 35:8206–8214CrossRefGoogle Scholar
  77. 77.
    Sheng Z, Hu D, Zheng M, Zhao P, Liu H, Gao D, Gong P, Gao G, Zhang P, Ma Y, Cai L (2014) Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano. doi: 10.1021/nn5062386 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenPeople’s Republic of China

Personalised recommendations