Skip to main content

Lanthanide-Doped Upconversion Nanoparticles for Imaging-Guided Drug Delivery and Therapy

  • Chapter
  • First Online:
Advances in Nanotheranostics I

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 6))

  • 1466 Accesses

Abstract

Lanthanide-doped upconversion nanoparticles (UCNPs) possess unique anti-Stokes optical properties, in which low-energy near-infrared (NIR) excitation can be converted into high-energy UV and/or visible emission with pronounced luminescence and chemical stability. Due to the rapid development of synthesis chemistry, lanthanide-doped UCNPs can be fabricated with narrow distribution and modulated physical behaviors. These unique characters endow them unique NIR-driven imaging/delivery/therapeutic applications, especially in the cases of the deep tissue environments. Herein, we introduce both the basic concepts and the up-to-date progresses of UCNPs in material engineering, toxicology, and bio-applications in imaging, molecular delivery, and tumor therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–173

    Article  Google Scholar 

  2. Wu X, Chen G, Shen J et al (2015) Upconversion nanoparticles: a versatile solution to multiscale biological imaging. Bioconjug Chem 28(2):166–175

    Article  Google Scholar 

  3. Wu SW, Han G, Milliron DJ et al (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci U S A 106(27):10917–10921

    Article  Google Scholar 

  4. Liu Q, Feng W, Yang TS et al (2013) Upconversion luminescence imaging of cells and small animals. Nat Protoc 8(10):2033–2044

    Article  Google Scholar 

  5. Chen GY, Shen J, Ohulchanskyy TY et al (2012) (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6(9):8280–8287

    Article  Google Scholar 

  6. Yang TS, Liu Q, Li JC et al (2014) Photoswitchable upconversion nanophosphors for small animal imaging in vivo. R Soc Chem Adv 4(30):15613–15619

    Google Scholar 

  7. Shen J, Zhao L, Han G (2013) Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv Drug Deliv Rev 65(5):744–755

    Article  Google Scholar 

  8. Idris NM, Jayakumar MKG, Bansal A et al (2015) Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev 44(6):1449–1478

    Article  Google Scholar 

  9. Wang J, Deng RR, MacDonald MA et al (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13(2):157–162

    Article  Google Scholar 

  10. Liu Q, Sun Y, Yang TS et al (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133(43):17122–17125

    Article  Google Scholar 

  11. Ryu J, Park HY, Kim K et al (2010) Facile synthesis of ultrasmall and hexagonal NaGdF4: Yb3+, Er3+ nanoparticles with magnetic and upconversion imaging properties. J Phys Chem C 114(49):21077–21082

    Article  Google Scholar 

  12. Shen J, Chen GY, Vu AM et al (2013) Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater 1(9):644–650

    Article  Google Scholar 

  13. Qiu PY, Zhou N, Chen HY et al (2013) Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification. Nanoscale 5(23):11512–11525

    Article  Google Scholar 

  14. Mai HX, Zhang YW, Si R et al (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128(19):6426–6436

    Article  Google Scholar 

  15. Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater 16(18):2324–2329

    Article  Google Scholar 

  16. Boyer JC, Vetrone F, Cuccia LA et al (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J Am Chem Soc 128(23):7444–7445

    Article  Google Scholar 

  17. Boyer JC, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett 7(3):847–852

    Article  Google Scholar 

  18. Yi GS, Chow GM (2007) Water-soluble NaYF4: Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341–343

    Article  Google Scholar 

  19. Zeng JH, Su J, Li ZH et al (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er, phosphors of controlled size and morphology. Adv Mater 17(17):2119–2123

    Article  Google Scholar 

  20. Wang X, Zhuang J, Peng Q et al (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124

    Article  Google Scholar 

  21. Liang X, Wang X, Zhuang J et al (2007) Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv Funct Mater 17(15):2757–2765

    Article  Google Scholar 

  22. Wang Y, Tu LP, Zhao JW et al (2009) Upconversion luminescence of beta-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: excitation power, density and surface dependence. J Phys Chem C 113(17):7164–7169

    Article  Google Scholar 

  23. Wang F, Wang JA, Liu XG (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49(41):7456–7460

    Article  Google Scholar 

  24. Shen J, Chen GY, Ohulchanskyy TY et al (2013) Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4:Yb, Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. Small 9(19):3213–3217

    Article  Google Scholar 

  25. Zhong YT, Tian G, Gu ZJ et al (2014) Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+ sensitized nanoparticles. Adv Mater 26(18):2831–2837

    Article  Google Scholar 

  26. Wen HL, Zhu H, Chen X et al (2013) Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew Chem Int Ed 52(50):13419–13423

    Article  Google Scholar 

  27. Lai J, Zhang Y, Pasquale N et al (2014) An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching. Angew Chem Int Ed 126(52):14647–14651

    Article  Google Scholar 

  28. Zhao L, Kutikov A, Shen J et al (2013) Stem cell labeling using polyethylenimine conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles. Theranostics 3(4):249–257

    Article  Google Scholar 

  29. Chen ZG, Chen HL, Hu H et al (2008) Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029

    Article  Google Scholar 

  30. Zhang TR, Ge JP, Hu YX et al (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7(10):3203–3207

    Article  Google Scholar 

  31. Dong AG, Ye XC, Chen J et al (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133(4):998–1006

    Article  Google Scholar 

  32. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Article  Google Scholar 

  33. Jin JF, Gu YJ, Man CWY et al (2011) Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5(10):7838–7847

    Article  Google Scholar 

  34. Cao TY, Yang Y, Gao YA et al (2011) High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 32(11):2959–2968

    Article  Google Scholar 

  35. Zhou J, Zhu XJ, Chen M et al (2012) Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. Biomaterials 33(26):6201–6210

    Article  MathSciNet  Google Scholar 

  36. Peng JJ, Sun Y, Zhao LZ et al (2013) Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb, Tm, Sm-153 nanoparticles for blood pool imaging in vivo. Biomaterials 34(37):9535–9544

    Article  Google Scholar 

  37. Xiong LQ, Chen ZG, Yu MX et al (2009) Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30(29):5592–5600

    Article  Google Scholar 

  38. Xiong LQ, Chen ZG, Tian QW et al (2009) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81(21):8687–8694

    Article  Google Scholar 

  39. Yu XF, Sun ZB, Li M et al (2010) Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials 31(33):8724–8731

    Article  Google Scholar 

  40. Bogdan N, Rodriguez EM, Sanz-Rodriguez F et al (2012) Bio-functionalization of ligand-free upconverting lanthanide doped nanoparticles for bio-imaging and cell targeting. Nanoscale 4(12):3647–3650

    Article  Google Scholar 

  41. Wang M, Mi CC, Wang WX et al (2009) Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano 3(6):1580–1586

    Article  Google Scholar 

  42. Xiong LQ, Yang TS, Yang Y et al (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31(27):7078–7085

    Article  Google Scholar 

  43. Cheng L, Yang K, Shao MW et al (2011) In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine 6(8):1327–1340

    Article  Google Scholar 

  44. Bridot JL, Faure AC, Laurent S et al (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084

    Article  Google Scholar 

  45. Liu CY, Gao ZY, Zeng JF et al (2013) Magnetic/upconversion fluorescent NaGdF4:Yb, Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano 7(8):7227–7240

    Article  Google Scholar 

  46. Jalil RA, Zhang Y (2008) Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29(30):4122–4128

    Article  Google Scholar 

  47. Wang C, Cheng LA, Liu ZA (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32(4):1110–1120

    Article  Google Scholar 

  48. Hou ZY, Li CX, Ma PA et al (2011) Electrospinning preparation and drug-delivery properties of an up-conversion luminescent porous NaYF4:Yb3+, Er3+@silica fiber nanocomposite. Adv Funct Mater 21(12):2356–2365

    Article  Google Scholar 

  49. Min YZ, Li JM, Liu F et al (2014) Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew Chem Int Ed 53(4):1012–1016

    Article  Google Scholar 

  50. Yang YM, Velmurugan B, Liu XG et al (2013) NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 9(17):2937–2944

    Article  Google Scholar 

  51. Thomas M, Klibanov AM (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62(1):27–34

    Article  Google Scholar 

  52. Jiang S, Zhang Y (2010) Upconversion nanoparticle-based FRET system for study of siRNA in live cells. Langmuir 26(9):6689–6694

    Article  Google Scholar 

  53. Guo HC, Idris NM, Zhang Y (2011) LRET-based biodetection of DNA release in live cells using surface-modified upconverting fluorescent nanoparticles. Langmuir 27(6):2854–2860

    Article  Google Scholar 

  54. Fisher AMR, Murphree AL, Gomer CJ (1995) Clinical and preclinical photodynamic therapy. Laser Surg Med 17(1):2–31

    Article  Google Scholar 

  55. Shan GB, Weissleder R, Hilderbrand SA (2013) Upconverting organic dye doped core-shell nano-composites for dual-modality NIR imaging and photo-thermal therapy. Theranostics 3(4):267–274

    Article  Google Scholar 

  56. Guo YY, Kumar M, Zhang P (2007) Nanoparticle-based photosensitizers under CW infrared excitation. Chem Mater 19(25):6071–6072

    Article  Google Scholar 

  57. Shan JN, Budijono SJ, Hu GH et al (2011) Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv Funct Mater 21(13):2488–2495

    Article  Google Scholar 

  58. Wang C, Tao HQ, Cheng L et al (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32(26):6145–6154

    Article  Google Scholar 

  59. Punjabi A, Wu X, Tokatli-Apollon A et al (2014) Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano 8(10):10621–10630

    Article  Google Scholar 

  60. Saxton RE, Paiva MB, Lufkin RB, Castro DJ (1995) Laser photochemotherapy – a less invasive approach for treatment of cancer. Semin Surg Oncol 11(4):283–289

    Article  Google Scholar 

  61. Dong BA, Xu S, Sun JA et al (2011) Multifunctional NaYF4: Yb3+, Er3+@Agcore/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem 21(17):6193–6200

    Article  Google Scholar 

  62. Xiao QF, Zheng XP, Bu WB et al (2013) A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc 135(35):13041–13048

    Article  Google Scholar 

  63. Chen Q, Wang C, Cheng L et al (2014) Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 35(9):2915–2923

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Z., Zhang, Y., Han, G. (2016). Lanthanide-Doped Upconversion Nanoparticles for Imaging-Guided Drug Delivery and Therapy. In: Dai, Z. (eds) Advances in Nanotheranostics I. Springer Series in Biomaterials Science and Engineering, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48544-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48544-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48542-2

  • Online ISBN: 978-3-662-48544-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics