Gold Nanostructures for Cancer Imaging and Therapy

  • Yongping Gao
  • Yongsheng LiEmail author
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 6)


Gold nanostructures can manipulate light at the nanoscale based on the optical phenomenon widely known as localized surface plasmon resonance (LSPR). Upon light excitation, specific gold nanostructures are supposed to preferentially absorb or scatter light in the near-infrared (NIR) region, which enable them applicable as imaging and therapeutic agents. Furthermore, facile surface functionalization via Au-S bonding makes gold nanostructures as universal substrates to attach functional molecules, drug cargo, and targeting ligands. Together with their easy synthesis and non-toxicity, gold nanostructures have emerged as a greatly promising platform in cancer diagnostics and treatment. This chapter summarizes the progress made in cancer imaging and therapy with gold nanostructures (1) as therapeutic components for photothermal therapy, photodynamic therapy, chemotherapy, and their combination; (2) as probes for various imaging techniques including dark-field, optical coherence tomography, two-photon luminescence, photoacoustic imaging, computed tomography, and surface-enhanced Raman scattering based imaging; and (3) as a theranostic platform for imaging-guided therapy.


Gold nanostructures Nanoshell Nanorod Nanocage Photothermal therapy Contrast agents Imaging-guided therapy 


  1. 1.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779CrossRefGoogle Scholar
  2. 2.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204CrossRefGoogle Scholar
  3. 3.
    Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791CrossRefGoogle Scholar
  4. 4.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782CrossRefGoogle Scholar
  5. 5.
    Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555CrossRefGoogle Scholar
  6. 6.
    Schneider GF, Subr V, Ulbrich K, Decher G (2009) Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Lett 9(2):636–642CrossRefGoogle Scholar
  7. 7.
    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708CrossRefGoogle Scholar
  8. 8.
    Qin Z, Bischof JC (2012) Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 41(3):1191–1217CrossRefGoogle Scholar
  9. 9.
    Nie L, Chen X (2014) Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 43(20):7132–7170MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24(6):755–761CrossRefGoogle Scholar
  11. 11.
    Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24(11):1418–1423CrossRefGoogle Scholar
  12. 12.
    You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, Nick AM, Sood AK, Li C (2012) Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res 72(18):4777–4786CrossRefGoogle Scholar
  13. 13.
    Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939CrossRefGoogle Scholar
  14. 14.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934CrossRefGoogle Scholar
  15. 15.
    Webb JA, Bardhan R (2014) Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6(5):2502–2530CrossRefGoogle Scholar
  16. 16.
    Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111(6):3888–3912CrossRefGoogle Scholar
  17. 17.
    Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martin Rodriguez E, Garcia Sole J (2014) Nanoparticles for photothermal therapies. Nanoscale 6(16):9494–9530CrossRefGoogle Scholar
  18. 18.
    Dong W, Li Y, Niu D, Ma Z, Liu X, Gu J, Zhao W, Zheng Y, Shi J (2013) A simple route to prepare monodisperse Au NP-decorated, dye-doped, superparamagnetic nanocomposites for optical, MR, and CT trimodal imaging. Small 9(15):2500–2508CrossRefGoogle Scholar
  19. 19.
    Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739CrossRefGoogle Scholar
  20. 20.
    Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596CrossRefGoogle Scholar
  21. 21.
    Samanta A, Jana S, Das RK, Chang YT (2014) Biocompatible surface-enhanced Raman scattering nanotags for in vivo cancer detection. Nanomedicine (Lond) 9(3):523–535CrossRefGoogle Scholar
  22. 22.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRefGoogle Scholar
  23. 23.
    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910CrossRefGoogle Scholar
  24. 24.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961CrossRefGoogle Scholar
  25. 25.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317CrossRefGoogle Scholar
  26. 26.
    Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711CrossRefGoogle Scholar
  27. 27.
    Hsiangkuo Y, Christopher GK, Hanjun H, Christy MW, Gerald AG, Tuan V-D (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7):075102CrossRefGoogle Scholar
  28. 28.
    Zhu J, Yong KT, Roy I, Hu R, Ding H, Zhao LL, Swihart MT, He GS, Cui YP, Prasad PN (2010) Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology 21(28):8CrossRefGoogle Scholar
  29. 29.
    Skrabalak SE, Au L, Li X, Xia Y (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2(9):2182–2190CrossRefGoogle Scholar
  30. 30.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247CrossRefGoogle Scholar
  31. 31.
    Shimizu T, Teranishi T, Hasegawa S, Miyake M (2003) Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J Phys Chem B 107(12):2719–2724CrossRefGoogle Scholar
  32. 32.
    Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR, Murray CB (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6(3):2804–2817CrossRefGoogle Scholar
  33. 33.
    Pandian Senthil K, Isabel P-S, Benito R-G, JGd Abajo F, Luis ML-M (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1):015606CrossRefGoogle Scholar
  34. 34.
    Lu X, Au L, McLellan J, Li Z-Y, Marquez M, Xia Y (2007) Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett 7(6):1764–1769CrossRefGoogle Scholar
  35. 35.
    Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745CrossRefGoogle Scholar
  36. 36.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088CrossRefGoogle Scholar
  37. 37.
    Guo L, Xu Y, Ferhan AR, Chen G, Kim D-H (2013) Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J Am Chem Soc 135(33):12338–12345CrossRefGoogle Scholar
  38. 38.
    Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841CrossRefGoogle Scholar
  39. 39.
    Chen JIL, Chen Y, Ginger DS (2010) Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J Am Chem Soc 132(28):9600–9601CrossRefGoogle Scholar
  40. 40.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453CrossRefGoogle Scholar
  41. 41.
    Lim D-K, Jeon K-S, Kim HM, Nam J-M, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9(1):60–67CrossRefGoogle Scholar
  42. 42.
    Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131(38):13639–13645CrossRefGoogle Scholar
  43. 43.
    Indrasekara AS, Paladini BJ, Naczynski DJ, Starovoytov V, Moghe PV, Fabris L (2013) Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection. Adv Healthc Mater 2(10):1370–1376CrossRefGoogle Scholar
  44. 44.
    Lukianova-Hleb EY, Anderson LJE, Lee S, Hafner JH, Lapotko DO (2010) Hot plasmonic interactions: a new look at the photothermal efficacy of gold nanoparticles. Phys Chem Chem Phys 12(38):12237–12244CrossRefGoogle Scholar
  45. 45.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554CrossRefGoogle Scholar
  46. 46.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRefGoogle Scholar
  47. 47.
    Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z-Y, Zhang H, Xia Y, Li X (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322CrossRefGoogle Scholar
  48. 48.
    Wang Y, Black KC, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu SY, Li M, Kim P, Li ZY, Wang LV, Liu Y, Xia Y (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7(3):2068–2077CrossRefGoogle Scholar
  49. 49.
    Chen C-C, Lin Y-P, Wang C-W, Tzeng H-C, Wu C-H, Chen Y-C, Chen C-P, Chen L-C, Wu Y-C (2006) DNA–gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128(11):3709–3715CrossRefGoogle Scholar
  50. 50.
    Jin Y, Gao X (2009) Spectrally tunable leakage-free gold nanocontainers. J Am Chem Soc 131(49):17774–17776CrossRefGoogle Scholar
  51. 51.
    Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ (2012) Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 6(9):7681–7691CrossRefGoogle Scholar
  52. 52.
    You J, Zhang G, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4(2):1033–1041CrossRefGoogle Scholar
  53. 53.
    Liu Y, Chang Z, Yuan H, Fales AM, Vo-Dinh T (2013) Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. Nanoscale 5(24):12126–12131CrossRefGoogle Scholar
  54. 54.
    Link S, Ei-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366CrossRefGoogle Scholar
  55. 55.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453CrossRefGoogle Scholar
  56. 56.
    Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (1999) Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103(9):1165–1170CrossRefGoogle Scholar
  57. 57.
    Tong L, Wei Q, Wei A, Cheng J-X (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects†. Photochem Photobiol 85(1):21–32CrossRefGoogle Scholar
  58. 58.
    Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134(28):11358–11361CrossRefGoogle Scholar
  59. 59.
    Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T (2012) In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine 8(8):1355–1363Google Scholar
  60. 60.
    Zhang Y, Yu J, Birch DJS, Chen Y (2010) Gold nanorods for fluorescence lifetime imaging in biology. J Biomed Opt 15(2):020504, 020504-020503CrossRefGoogle Scholar
  61. 61.
    Park J, Estrada A, Schwartz JA, Diagaradjane P, Krishnan S, Dunn AK, Tunnell JW (2010) Intra-organ biodistribution of gold nanoparticles using intrinsic two-photon-induced photoluminescence. Lasers Surg Med 42(7):630–639CrossRefGoogle Scholar
  62. 62.
    Wang Y, Xu J, Xia X, Yang M, Vangveravong S, Chen J, Mach RH, Xia Y (2012) SV119-gold nanocage conjugates: a new platform for targeting cancer cellsvia sigma-2 receptors. Nanoscale 4(2):421–424CrossRefGoogle Scholar
  63. 63.
    Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49CrossRefGoogle Scholar
  64. 64.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183CrossRefGoogle Scholar
  65. 65.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1170CrossRefGoogle Scholar
  66. 66.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802CrossRefGoogle Scholar
  67. 67.
    Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Gronbeck H, Hakkinen H (2008) A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci U S A 105(27):9157–9162CrossRefGoogle Scholar
  68. 68.
    Martin BR, Dermody DJ, Reiss BD, Fang M, Lyon LA, Natan MJ, Mallouk TE (1999) Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv Mater 11(12):1021–1025CrossRefGoogle Scholar
  69. 69.
    Hou W, Dasog M, Scott RWJ (2009) Probing the relative stability of thiolate- and dithiolate-protected Au monolayer-protected clusters. Langmuir 25(22):12954–12961CrossRefGoogle Scholar
  70. 70.
    Zhao Y, Pérez-Segarra W, Shi Q, Wei A (2005) Dithiocarbamate assembly on gold. J Am Chem Soc 127(20):7328–7329CrossRefGoogle Scholar
  71. 71.
    Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  72. 72.
    Yee CK, Ulman A, Ruiz JD, Parikh A, White H, Rafailovich M (2003) Alkyl selenide- and alkyl thiolate-functionalized gold nanoparticles: chain packing and bond nature. Langmuir 19(22):9450–9458CrossRefGoogle Scholar
  73. 73.
    Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, van der Velden JWA (1981) Au55[P(C6H5)3]12CI6 – ein Goldcluster ungewöhnlicher Größe. Chem Ber 114(11):3634–3642CrossRefGoogle Scholar
  74. 74.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRefGoogle Scholar
  75. 75.
    Au L, Zhang Q, Cobley CM, Gidding M, Schwartz AG, Chen J, Xia Y (2009) Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 4(1):35–42CrossRefGoogle Scholar
  76. 76.
    Gittins DI, Caruso F (2001) Tailoring the polyelectrolyte coating of metal nanoparticles. J Phys Chem B 105(29):6846–6852CrossRefGoogle Scholar
  77. 77.
    Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17(6):1325–1330CrossRefGoogle Scholar
  78. 78.
    Murphy CJ, Thompson LB, Alkilany AM, Sisco PN, Boulos SP, Sivapalan ST, Yang JA, Chernak DJ, Huang J (2010) The many faces of gold nanorods. J Phys Chem Lett 1(19):2867–2875CrossRefGoogle Scholar
  79. 79.
    Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132(13):4678–4684CrossRefGoogle Scholar
  80. 80.
    Wong JK, Yip SP, Lee TM (2012) Silica-modified oligonucleotide-gold nanoparticle conjugate enables closed-tube colorimetric polymerase chain reaction. Small 8(2):214–219CrossRefGoogle Scholar
  81. 81.
    Wu P, Gao Y, Zhang H, Cai C (2012) Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal Chem 84(18):7692–7699CrossRefGoogle Scholar
  82. 82.
    Huh YS, Chung AJ, Erickson D (2009) Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluid Nanofluid 6(3):285–297CrossRefGoogle Scholar
  83. 83.
    Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold–silica core–shell particles. Langmuir 12(18):4329–4335CrossRefGoogle Scholar
  84. 84.
    Jana NR, Earhart C, Ying JY (2007) Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 19(21):5074–5082CrossRefGoogle Scholar
  85. 85.
    Banholzer MJ, Harris N, Millstone JE, Schatz GC, Mirkin CA (2010) Abnormally large plasmonic shifts in silica-protected gold triangular nanoprisms†. J Phys Chem C 114(16):7521–7526CrossRefGoogle Scholar
  86. 86.
    Wang Y, Yan B, Chen L (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428MathSciNetCrossRefGoogle Scholar
  87. 87.
    Roti Roti JL (2008) Cellular responses to hyperthermia (40–46°C): cell killing and molecular events. Int J Hyperth 24(1):3–15CrossRefGoogle Scholar
  88. 88.
    O’Grady NP, Barie PS, Bartlett JG, Bleck T, Garvey G, Jacobi J, Linden P, Maki DG, Nam M, Pasculle W, Pasquale MD, Tribett DL, Masur H (1998) Practice guidelines for evaluating new fever in critically ill adult patients. Clin Infect Dis 26(5):1042–1059CrossRefGoogle Scholar
  89. 89.
    Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, Torti SV, Rylander CG, Rylander MN (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70(23):9855–9864CrossRefGoogle Scholar
  90. 90.
    Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56CrossRefGoogle Scholar
  91. 91.
    Habash RW, Bansal R, Krewski D, Alhafid HT (2007) Thermal therapy, part IV: electromagnetic and thermal dosimetry. Crit Rev Biomed Eng 35(1–2):123–182CrossRefGoogle Scholar
  92. 92.
    Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M (2007) Hyperthermia – description of a method and a review of clinical applications. Rep Pract Oncol Radiother 12(5):267–275CrossRefGoogle Scholar
  93. 93.
    Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24(2):62–67CrossRefGoogle Scholar
  94. 94.
    Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A New Era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183CrossRefGoogle Scholar
  95. 95.
    Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404CrossRefGoogle Scholar
  96. 96.
    Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114(21):10869–10939CrossRefGoogle Scholar
  97. 97.
    Caccamo AE, Desenzani S, Belloni L, Borghetti AF, Bettuzzi S (2006) Nuclear clusterin accumulation during heat shock response: implications for cell survival and thermo-tolerance induction in immortalized and prostate cancer cells. J Cell Physiol 207(1):208–219CrossRefGoogle Scholar
  98. 98.
    Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44(10):936–946CrossRefGoogle Scholar
  99. 99.
    Melancon MP, Zhou M, Li C (2011) Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res 44(10):947–956CrossRefGoogle Scholar
  100. 100.
    Zhang Z, Wang J, Chen C (2013) Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater 25(28):3869–3880MathSciNetCrossRefGoogle Scholar
  101. 101.
    Matsushita-Ishiodori Y, Ohtsuki T (2012) Photoinduced RNA interference. Acc Chem Res 45(7):1039–1047CrossRefGoogle Scholar
  102. 102.
    Chen W, Carubelli R, Liu H, Nordquist R (2003) Laser immunotherapy. Mol Biotechnol 25(1):37–43CrossRefGoogle Scholar
  103. 103.
    Phonthammachai N, Kah JCY, Jun G, Sheppard CJR, Olivo MC, Mhaisalkar SG, White TJ (2008) Synthesis of contiguous silica–gold core–shell structures: critical parameters and processes. Langmuir 24(9):5109–5112CrossRefGoogle Scholar
  104. 104.
    Brinson BE, Lassiter JB, Levin CS, Bardhan R, Mirin N, Halas NJ (2008) Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24(24):14166–14171CrossRefGoogle Scholar
  105. 105.
    Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851CrossRefGoogle Scholar
  106. 106.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176CrossRefGoogle Scholar
  107. 107.
    Huiyu L, Dong C, Fangqiong T, Gangjun D, Linlin L, Xianwei M, Wei L, Yangde Z, Xu T, Yi L (2008) Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology 19(45):455101CrossRefGoogle Scholar
  108. 108.
    Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 50(4):891–895CrossRefGoogle Scholar
  109. 109.
    Bardhan R, Chen W, Bartels M, Perez-Torres C, Botero MF, McAninch RW, Contreras A, Schiff R, Pautler RG, Halas NJ, Joshi A (2010) Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett 10(12):4920–4928CrossRefGoogle Scholar
  110. 110.
    Ma Y, Liang X, Tong S, Bao G, Ren Q, Dai Z (2013) Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv Funct Mater 23(7):815–822CrossRefGoogle Scholar
  111. 111.
    Dong W, Li Y, Niu D, Ma Z, Gu J, Chen Y, Zhao W, Liu X, Liu C, Shi J (2011) Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv Mater 23(45):5392–5397CrossRefGoogle Scholar
  112. 112.
    Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, Li C (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog–conjugated hollow gold nanospheres. Clin Cancer Res 15(3):876–886CrossRefGoogle Scholar
  113. 113.
    Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, Zhang R, Flores LG, Gelovani JG, Wang LV, Ku G, Stafford RJ, Li C (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71(19):6116–6121CrossRefGoogle Scholar
  114. 114.
    Cole JR, Mirin NA, Knight MW, Goodrich GP, Halas NJ (2009) Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J Phys Chem C 113(28):12090–12094CrossRefGoogle Scholar
  115. 115.
    Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29CrossRefGoogle Scholar
  116. 116.
    Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka†. J Phys Chem C 114(16):7378–7383CrossRefGoogle Scholar
  117. 117.
    Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A (2014) Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8(6):6372–6381CrossRefGoogle Scholar
  118. 118.
    Ayala-Orozco C, Urban C, Bishnoi S, Urban A, Charron H, Mitchell T, Shea M, Nanda S, Schiff R, Halas N, Joshi A (2014) Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. J Control Release 191:90–97CrossRefGoogle Scholar
  119. 119.
    Gao Y, Li Y, Wang Y, Chen Y, Gu J, Zhao W, Ding J, Shi J (2014) Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection. Small 11(1):77–83CrossRefGoogle Scholar
  120. 120.
    Jorden D, Goodrich GP, Schwartz J, Halas NJ, West J (2012) Nanospectra biosciences.
  121. 121.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  122. 122.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248CrossRefGoogle Scholar
  123. 123.
    von Maltzahn G, Park J-H, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900CrossRefGoogle Scholar
  124. 124.
    Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66CrossRefGoogle Scholar
  125. 125.
    Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5(3):1995–2003CrossRefGoogle Scholar
  126. 126.
    Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2009) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy†. Mol Pharm 7(1):94–104CrossRefGoogle Scholar
  127. 127.
    Horiguchi Y, Honda K, Kato Y, Nakashima N, Niidome Y (2008) Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir 24(20):12026–12031CrossRefGoogle Scholar
  128. 128.
    Candice LD, Pinhas E, Astrid C-R, Steven LJ, Jeffrey JLC (2009) Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom. Nanotechnology 20(19):195102CrossRefGoogle Scholar
  129. 129.
    Chon JWM, Bullen C, Zijlstra P, Gu M (2007) Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater 17(6):875–880CrossRefGoogle Scholar
  130. 130.
    Zijlstra P, Chon JWM, Gu M (2007) Effect of heat accumulation on the dynamic range of a gold nanorod dopedpolymer nanocomposite for optical laser writing and patterning. Opt Express 15(19):12151–12160CrossRefGoogle Scholar
  131. 131.
    Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, He M, Li Z, Gao G, Gao B, Fu S, Cui D (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32(36):9796–9809CrossRefGoogle Scholar
  132. 132.
    Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901CrossRefGoogle Scholar
  133. 133.
    Chen J, McLellan JM, Siekkinen A, Xiong Y, Li Z-Y, Xia Y (2006) Facile synthesis of gold–silver nanocages with controllable pores on the surface. J Am Chem Soc 128(46):14776–14777CrossRefGoogle Scholar
  134. 134.
    Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595CrossRefGoogle Scholar
  135. 135.
    Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817CrossRefGoogle Scholar
  136. 136.
    Sun T, Wang Y, Wang Y, Xu J, Zhao X, Vangveravong S, Mach RH, Xia Y (2014) Using SV119-gold nanocage conjugates to eradicate cancer stem cells through a combination of photothermal and chemo therapies. Adv Healthc Mater 3(8):1283–1291CrossRefGoogle Scholar
  137. 137.
    Julien RGN, Delphine M, Frederic L, Nicholas PB, Sophie M, Yann L, Jacqueline M, Frederic C, Guillaume M, Ana-Maria G, Alexis M, Emmanuel C, Patrice LB, Kenji K, Stephane P (2012) Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology 23(46):465602CrossRefGoogle Scholar
  138. 138.
    Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132(51):18103–18114CrossRefGoogle Scholar
  139. 139.
    Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL (2010) Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6(6):745–752CrossRefGoogle Scholar
  140. 140.
    Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente JM (2012) Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir 28(24):8965–8970CrossRefGoogle Scholar
  141. 141.
    Tsai MF, Chang SH, Cheng FY, Shanmugam V, Cheng YS, Su CH, Yeh CS (2013) Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 7(6):5330–5342CrossRefGoogle Scholar
  142. 142.
    Rosenberg SA, Lotze MT, Yang JC, Linehan WM, Seipp C, Calabro S, Karp SE, Sherry RM, Steinberg S, White DE (1989) Combination therapy with interleukin-2 and alpha-interferon for the treatment of patients with advanced cancer. J Clin Oncol 7(12):1863–1874Google Scholar
  143. 143.
    O’Shaughnessy J, Miles D, Vukelja S, Moiseyenko V, Ayoub J-P, Cervantes G, Fumoleau P, Jones S, Lui W-Y, Mauriac L, Twelves C, Van Hazel G, Verma S, Leonard R (2002) Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J Clin Oncol 20(12):2812–2823CrossRefGoogle Scholar
  144. 144.
    Coley HM (2008) Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 34(4):378–390MathSciNetCrossRefGoogle Scholar
  145. 145.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458CrossRefGoogle Scholar
  146. 146.
    Sargent DJ, Wieand HS, Haller DG, Gray R, Benedetti JK, Buyse M, Labianca R, Seitz JF, O’Callaghan CJ, Francini G, Grothey A, O’Connell M, Catalano PJ, Blanke CD, Kerr D, Green E, Wolmark N, Andre T, Goldberg RM, De Gramont A (2005) Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 23(34):8664–8670CrossRefGoogle Scholar
  147. 147.
    Lee S-M, Kim HJ, Ha Y-J, Park YN, Lee S-K, Park Y-B, Yoo K-H (2012) Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7(1):50–57CrossRefGoogle Scholar
  148. 148.
    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905CrossRefGoogle Scholar
  149. 149.
    Jang B, Park J-Y, Tung C-H, Kim I-H, Choi Y (2011) Gold nanorod–photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5(2):1086–1094CrossRefGoogle Scholar
  150. 150.
    Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan W (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6(6):5070–5077CrossRefGoogle Scholar
  151. 151.
    Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G, Chen X, Nie Z (2013) Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7(6):5320–5329CrossRefGoogle Scholar
  152. 152.
    Wang S, Huang P, Nie L, Xing R, Liu D, Wang Z, Lin J, Chen S, Niu G, Lu G, Chen X (2013) Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 25(22):3055–3061CrossRefGoogle Scholar
  153. 153.
    Vijayaraghavan P, Liu CH, Vankayala R, Chiang CS, Hwang KC (2014) Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv Mater 26(39):6689–6695CrossRefGoogle Scholar
  154. 154.
    Li Y, Wen T, Zhao R, Liu X, Ji T, Wang H, Shi X, Shi J, Wei J, Zhao Y, Wu X, Nie G (2014) Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8(11):11529–11542CrossRefGoogle Scholar
  155. 155.
    Min Y, Mao C-Q, Chen S, Ma G, Wang J, Liu Y (2012) Combating the drug resistance of cisplatin using a platinum prodrug based delivery system. Angew Chem Int Ed 51(27):6742–6747CrossRefGoogle Scholar
  156. 156.
    May JP, Li S-D (2013) Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 10(4):511–527CrossRefGoogle Scholar
  157. 157.
    Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WCW (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20(20):3832–3838CrossRefGoogle Scholar
  158. 158.
    Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315CrossRefGoogle Scholar
  159. 159.
    You J-O, Guo P, Auguste DT (2013) A drug-delivery vehicle combining the targeting and thermal ablation of HER2+ breast-cancer cells with triggered drug release. Angew Chem Int Ed 52(15):4141–4146CrossRefGoogle Scholar
  160. 160.
    Nam J, La W-G, Hwang S, Ha YS, Park N, Won N, Jung S, Bhang SH, Ma Y-J, Cho Y-M, Jin M, Han J, Shin J-Y, Wang EK, Kim SG, Cho S-H, Yoo J, Kim B-S, Kim S (2013) pH-responsive assembly of gold nanoparticles and “Spatiotemporally Concerted” drug release for synergistic cancer therapy. ACS Nano 7(4):3388–3402CrossRefGoogle Scholar
  161. 161.
    Lee S-M, Park H, Yoo K-H (2010) Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv Mater 22(36):4049–4053CrossRefGoogle Scholar
  162. 162.
    You J, Shao R, Wei X, Gupta S, Li C (2010) Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small 6(9):1022–1031CrossRefGoogle Scholar
  163. 163.
    You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C (2012) Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J Control Release 158(2):319–328CrossRefGoogle Scholar
  164. 164.
    Yang X, Liu Z, Li Z, Pu F, Ren J, Qu X (2013) Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy. Chem Eur J 19(31):10388–10394CrossRefGoogle Scholar
  165. 165.
    Shen S, Tang H, Zhang X, Ren J, Pang Z, Wang D, Gao H, Qian Y, Jiang X, Yang W (2013) Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 34(12):3150–3158CrossRefGoogle Scholar
  166. 166.
    Xiao Z, Ji C, Shi J, Pridgen EM, Frieder J, Wu J, Farokhzad OC (2012) DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed 51(47):11853–11857CrossRefGoogle Scholar
  167. 167.
    Zhang Z, Wang J, Nie X, Wen T, Ji Y, Wu X, Zhao Y, Chen C (2014) Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc 136(20):7317–7326CrossRefGoogle Scholar
  168. 168.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004Google Scholar
  169. 169.
    El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834CrossRefGoogle Scholar
  170. 170.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRefGoogle Scholar
  171. 171.
    Loo C, Hirsch L, Lee M-H, Chang E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30(9):1012–1014CrossRefGoogle Scholar
  172. 172.
    Ding H, Yong K-T, Roy I, Pudavar HE, Law WC, Bergey EJ, Prasad PN (2007) Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J Phys Chem C 111(34):12552–12557CrossRefGoogle Scholar
  173. 173.
    Chanda N, Shukla R, Katti KV, Kannan R (2009) Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett 9(5):1798–1805CrossRefGoogle Scholar
  174. 174.
    Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40CrossRefGoogle Scholar
  175. 175.
    Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA (2008) Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 53(18):4995CrossRefGoogle Scholar
  176. 176.
    Oldenburg AL, Hansen MN, Ralston TS, Wei A, Boppart SA (2009) Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. J Mater Chem 19(35):6407–6411CrossRefGoogle Scholar
  177. 177.
    Kim CS, Wilder-Smith P, Ahn Y-C, Liaw L-HL, Chen Z, Kwon YJ (2009) Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt 14(3):034008, 034008-034008CrossRefGoogle Scholar
  178. 178.
    Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C et al (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefGoogle Scholar
  179. 179.
    Zhou Y, Wu X, Wang T, Ming T, Wang PN, Zhou LW, Chen JY (2010) A comparison study of detecting gold nanorods in living cells with confocal reflectance microscopy and two-photon fluorescence microscopy. J Microsc 237(2):200–207MathSciNetCrossRefGoogle Scholar
  180. 180.
    Jiang Y, Horimoto NN, Imura K, Okamoto H, Matsui K, Shigemoto R (2009) Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold. Adv Mater 21(22):2309–2313CrossRefGoogle Scholar
  181. 181.
    Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng JX (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci U S A 102(44):15752–15756CrossRefGoogle Scholar
  182. 182.
    Loumaigne M, Richard A, Laverdant J, Nutarelli D, Débarre A (2010) Ligand-induced anisotropy of the two-photon luminescence of spherical gold particles in solution unraveled at the single particle level. Nano Lett 10(8):2817–2824CrossRefGoogle Scholar
  183. 183.
    Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945CrossRefGoogle Scholar
  184. 184.
    Huff TB, Hansen MN, Zhao Y, Cheng J-X, Wei A (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23(4):1596–1599CrossRefGoogle Scholar
  185. 185.
    He W, Wang H, Hartmann LC, Cheng JX, Low PS (2007) In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci U S A 104(28):11760–11765CrossRefGoogle Scholar
  186. 186.
    Liang G, Tegy JV, Vengadesan N (2011) Nanoshells for in vivo imaging using two-photon excitation microscopy. Nanotechnology 22(36):365102CrossRefGoogle Scholar
  187. 187.
    Tong L, Cobley CM, Chen J, Xia Y, Cheng J-X (2010) Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew Chem Int Ed 49(20):3485–3488CrossRefGoogle Scholar
  188. 188.
    Wang LV (2008) Tutorial on photoacoustic microscopy and computed tomography. IEEE J Sel Top Quantum Electron 14(1):171–179CrossRefGoogle Scholar
  189. 189.
    Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692CrossRefGoogle Scholar
  190. 190.
    Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS (2012) Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6(11):10366–10377CrossRefGoogle Scholar
  191. 191.
    Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11(2):348–354CrossRefGoogle Scholar
  192. 192.
    Jokerst JV, Thangaraj M, Kempen PJ, Sinclair R, Gambhir SS (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6(7):5920–5930CrossRefGoogle Scholar
  193. 193.
    Li W, Brown PK, Wang LV, Xia Y (2011) Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol Imaging 6(5):370–377CrossRefGoogle Scholar
  194. 194.
    Yang X, Skrabalak SE, Li Z-Y, Xia Y, Wang LV (2007) Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Lett 7(12):3798–3802CrossRefGoogle Scholar
  195. 195.
    Song KH, Kim C, Cobley CM, Xia Y, Wang LV (2008) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9(1):183–188CrossRefGoogle Scholar
  196. 196.
    Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, Xia Y, Wang LV (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8):4559–4564CrossRefGoogle Scholar
  197. 197.
    Kim C, Song H-M, Cai X, Yao J, Wei A, Wang LV (2011) In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J Mater Chem 21(9):2841–2844CrossRefGoogle Scholar
  198. 198.
    Nie L, Wang S, Wang X, Rong P, Ma Y, Liu G, Huang P, Lu G, Chen X (2014) In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 10(8):1585–1593CrossRefGoogle Scholar
  199. 199.
    Cheng K, Kothapalli S-R, Liu H, Koh AL, Jokerst JV, Jiang H, Yang M, Li J, Levi J, Wu JC, Gambhir SS, Cheng Z (2014) Construction and validation of nano gold tripods for molecular imaging of living subjects. J Am Chem Soc 136(9):3560–3571CrossRefGoogle Scholar
  200. 200.
    Galper MW, Saung MT, Fuster V, Roessl E, Thran A, Proksa R, Fayad ZA, Cormode DP (2012) Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast. Invest Radiol 47(8):475–481CrossRefGoogle Scholar
  201. 201.
    Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new x-ray contrast agent. Br J Radiol 79(939):248–253CrossRefGoogle Scholar
  202. 202.
    Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665CrossRefGoogle Scholar
  203. 203.
    Boote E, Fent G, Kattumuri V, Casteel S, Katti K, Chanda N, Kannan R, Katti K, Churchill R (2010) Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using x-ray computed tomography. Acad Radiol 17(4):410–417CrossRefGoogle Scholar
  204. 204.
    Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum Arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and x-ray-contrast-imaging studies. Small 3(2):333–341CrossRefGoogle Scholar
  205. 205.
    Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119CrossRefGoogle Scholar
  206. 206.
    Chie K, Yasuhito U, Mikako O, Atsushi H, Yasuhiro M, Kenji K (2010) X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 21(24):245104CrossRefGoogle Scholar
  207. 207.
    Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859–2864Google Scholar
  208. 208.
    Sun I-C, Eun D-K, Koo H, Ko C-Y, Kim H-S, Yi DK, Choi K, Kwon IC, Kim K, Ahn C-H (2011) Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angew Chem Int Ed 50(40):9348–9351CrossRefGoogle Scholar
  209. 209.
    Eck W, Nicholson AI, Zentgraf H, Semmler W, Bartling S (2010) Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in x-ray computed tomography of live mice. Nano Lett 10(7):2318–2322CrossRefGoogle Scholar
  210. 210.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250CrossRefGoogle Scholar
  211. 211.
    Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496CrossRefGoogle Scholar
  212. 212.
    Alvarez-Puebla RA, Liz-Marzan LM (2012) Traps and cages for universal SERS detection. Chem Soc Rev 41(1):43–51CrossRefGoogle Scholar
  213. 213.
    Vo-Dinh T, Wang HN, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102Google Scholar
  214. 214.
    Wachsmann-Hogiu S, Weeks T, Huser T (2009) Chemical analysis in vivo and in vitro by Raman spectroscopy-from single cells to humans. Curr Opin Biotechnol 20(1):63–73CrossRefGoogle Scholar
  215. 215.
    Levin CS, Kundu J, Barhoumi A, Halas NJ (2009) Nanoshell-based substrates for surface enhanced spectroscopic detection of biomolecules. Analyst 134(9):1745–1750CrossRefGoogle Scholar
  216. 216.
    Larmour IA, Graham D (2011) Surface enhanced optical spectroscopies for bioanalysis. Analyst 136(19):3831–3853CrossRefGoogle Scholar
  217. 217.
    Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90CrossRefGoogle Scholar
  218. 218.
    Park J-H, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, Bhatia SN, Sailor MJ (2010) Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater 22(8):880–885CrossRefGoogle Scholar
  219. 219.
    Samanta A, Maiti KK, Soh K-S, Liao X, Vendrell M, Dinish US, Yun S-W, Bhuvaneswari R, Kim H, Rautela S, Chung J, Olivo M, Chang Y-T (2011) Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew Chem Int Ed 50(27):6089–6092CrossRefGoogle Scholar
  220. 220.
    Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang RM, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18(5):829–835CrossRefGoogle Scholar
  221. 221.
    Karabeber H, Huang R, Iacono P, Samii JM, Pitter K, Holland EC, Kircher MF (2014) Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 8(10):9755–9766CrossRefGoogle Scholar
  222. 222.
    Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci U S A 105(15):5844–5849CrossRefGoogle Scholar
  223. 223.
    Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A 106(32):13511–13516CrossRefGoogle Scholar
  224. 224.
    von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21(31):3175–3180CrossRefGoogle Scholar
  225. 225.
    Maiti KK, Dinish US, Samanta A, Vendrell M, Soh KS, Park SJ, Olivo M, Chang YT (2012) Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7(2):85–93CrossRefGoogle Scholar
  226. 226.
    Kang H, Jeong S, Park Y, Yim J, Jun BH, Kyeong S, Yang JK, Kim G, Hong S, Lee LP, Kim JH, Lee HY, Jeong DH, Lee YS (2013) Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv Funct Mater 23(30):3719–3727CrossRefGoogle Scholar
  227. 227.
    Iacono P, Karabeber H, Kircher MF (2014) A “Schizophotonic” all-in-one nanoparticle coating for multiplexed SE(R)RS biomedical imaging. Angew Chem Int Ed 126(44):11950–11955CrossRefGoogle Scholar
  228. 228.
    Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 45(46):7754–7758CrossRefGoogle Scholar
  229. 229.
    Ji X, Shao R, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, Liang G, Luo Z-P, Park K, Markert JT, Li C (2007) Bifunctional gold nanoshells with a superparamagnetic iron oxide–silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 111(17):6245–6251CrossRefGoogle Scholar
  230. 230.
    Chen W, Bardhan R, Bartels M, Perez-Torres C, Pautler RG, Halas NJ, Joshi A (2010) A molecularly targeted theranostic probe for ovarian cancer. Mol Cancer Ther 9(4):1028–1038CrossRefGoogle Scholar
  231. 231.
    Bardhan R, Chen WX, Perez-Torres C, Bartels M, Huschka RM, Zhao LL, Morosan E, Pautler RG, Joshi A, Halas NJ (2009) Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv Funct Mater 19(24):3901–3909CrossRefGoogle Scholar
  232. 232.
    Li Z, Yin S, Cheng L, Yang K, Li Y, Liu Z (2014) Magnetic targeting enhanced theranostic strategy based on multimodal imaging for selective ablation of cancer. Adv Funct Mater 24(16):2312–2321CrossRefGoogle Scholar
  233. 233.
    Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee ST, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed Engl 50(32):7385–7390CrossRefGoogle Scholar
  234. 234.
    Coughlin AJ, Ananta JS, Deng N, Larina IV, Decuzzi P, West JL (2014) Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small 10(3):556–565CrossRefGoogle Scholar
  235. 235.
    Zhang Y, Qian J, Wang D, Wang Y, He S (2013) Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew Chem Int Ed Engl 52(4):1148–1151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.East China University of Science and TechnologyShanghaiChina

Personalised recommendations