Multifunctional Liposomes for Imaging-Guided Therapy

  • Xiuli Yue
  • Zhifei DaiEmail author
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 6)


Liposomes has enjoyed an explosive development in nanomedicine due to the exciting feature of easy combinations of diagnostic and/or therapeutic agents into a single agent. A variety of multifunctional liposomes have been developed by loading various therapeutic agents (e.g., radionuclides, doxorubicin, paclitaxel, siRNA, DNA) and imaging contrast agents (e.g., radionuclides, quantum dots, Gd complex, and Fe3O4). Each component would operate a different function, such as molecular targeting, contrast-enhanced imaging (e.g., nuclear, fluorescence, magnetic resonance, CT, photoacoustic, and ultrasound), and therapy (e.g., chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, or combined therapy). Moreover, the surface of liposomes can be easily modified with ligands for targeting delivery to the diseased sites. In addition, the multimodality imaging functionalization of therapeutic drug carrying liposomes is of particular interest for personalized monitoring of the in vivo tumor targeting and pharmacokinetics of liposomal therapeutic agents, predicting therapy outcome, and gaining a better understanding of the prognosis-associated disease status by combining the advantageous information from each imaging modality. Therefore, multifunctional liposomes can serve as a theranostic nanomedicine for noninvasive imaging diagnosis, real-time imaging guidance, and remote-controlled therapeutics, especially imaging-guided therapeutics, enabling personalized detection and treatment of diseases with high efficacy. However, liposomes still have not attained their full potential because of insufficient stability. Recently, a hybrid liposomal cerasome with high stability has been developed to overcome general problems associated with current liposome technology. The present chapter first highlights some of the key advances of theranostic liposomes for imaging-guided therapy as a tool in personalized medicine.


Liposomes Cerasomes Drug delivery Contrast-enhanced imaging Nanotheranostic agent 



This research was financially supported by State Key Program of National Natural Science of China (No. 81230036), National Natural Science Foundation of China (No. 21273014), and National Natural Science Foundation for Distinguished Young Scholars (No. 81225011).


  1. 1.
    Daniel JAM, John MH, Robert JH et al (2007) Molecular imaging techniques in body imaging. Radiology 245(2):333–356. doi: 10.1148/radiol.2452061117 CrossRefGoogle Scholar
  2. 2.
    Khullar O, Frangioni JV, Grinstaff M et al (2009) Image-guided sentinel lymph node mapping and nanotechnology-based nodal treatment in lung cancer using invisible near-infrared fluorescent light. Semin Thorac Cardiovasc Surg 21(4):309–315. doi: 10.1053/j.semtcvs.2009.11.009 CrossRefGoogle Scholar
  3. 3.
    Troyan SL, Kianzad V, Gibbs-Strauss SL et al (2009) The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16(10):2943–2952. doi: 10.1245/s10434-009-0594-2 CrossRefGoogle Scholar
  4. 4.
    Petersen AL, Hansen AE, Gabizon A et al (2012) Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 64:1417–1435. doi: 10.1016/j.addr.2012.09.003 CrossRefGoogle Scholar
  5. 5.
    Lanza GM, Winter PM, Caruthers SD et al (2004) Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11(6):733–743. doi: 10.1016/j.nuclcard.2004.09.002 CrossRefGoogle Scholar
  6. 6.
    Blasberg RG, Gelovani J (2002) Molecular-genetic imaging: a nuclear medicine−based perspective. Mol Imaging 1(3):280–300CrossRefGoogle Scholar
  7. 7.
    Martí-Bonmatí L, Sopena R, Bartumeus P et al (2010) Multimodality imaging techniques. Contrast Media Mol Imaging 5(4):180–189. doi: 10.1002/cmmi.393 CrossRefGoogle Scholar
  8. 8.
    Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195. doi: 10.1021/cr9003538 CrossRefGoogle Scholar
  9. 9.
    Jennings LE, Long NJ (2009) ‘Two is better than one’ probes for dual-modality molecular imaging. Chem Commun (Camb) 24:3511–3524. doi: 10.1039/b821903f CrossRefGoogle Scholar
  10. 10.
    Lammers T, Kiessling F, Hennink WE et al (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7(6):1899–1912. doi: 10.1021/mp100228v CrossRefGoogle Scholar
  11. 11.
    Buse J, El-Aneed A (2010) Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine 5(8):1237–1260. doi: 10.2217/nnm.10.107 CrossRefGoogle Scholar
  12. 12.
    Koning GA, Krijger GC (2007) Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery. Anticancer Agents Med Chem 7(4):425–440CrossRefGoogle Scholar
  13. 13.
    Lammers T, Aime S, Hennink WE et al (2011) Theranostic nanomedicine. Acc Chem Res 44(10):1029–1038. doi: 10.1021/ar200019c CrossRefGoogle Scholar
  14. 14.
    Gabizon AA (2007) Applications of liposomal drug delivery systems to cancer therapy. In: Amiji MM (ed) Nanotechnology for cancer therapy, 1st edn. CRC Press, Boca Raton, pp 595–611Google Scholar
  15. 15.
    Elbayoumi TA, Torchilin VP (2010) Current trends in liposome research. Methods Mol Biol 605:1–27. doi: 10.1007/978-1-60327-360-2_1 CrossRefGoogle Scholar
  16. 16.
    Bao A, Goinsc B, Klipper R et al (2004) Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther 308(2):419–425. doi: 10.1124/jpet.103.059535 CrossRefGoogle Scholar
  17. 17.
    Madaswamy MS, Si-Shen F (2013) Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv 10(2):151–155. doi: 10.1517/17425247.2013.729576 CrossRefGoogle Scholar
  18. 18.
    Puri A, Loomis K, Smith B et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580CrossRefGoogle Scholar
  19. 19.
    Allen T, Hansen C, Martin F et al (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066(1):29–36CrossRefGoogle Scholar
  20. 20.
    Zhong C, Yan M, Xiuli Y et al (2010) Stabilized liposomal nanohybrid cerasomes for drug delivery applications. Chem Commun 46(29):5265–5267. doi: 10.1039/b926367e CrossRefGoogle Scholar
  21. 21.
    Gordon KB, Tajuddin A, Guitart J et al (1995) Hand-foot syndrome-associated with liposome-encapsulated doxorubicin therapy. Cancer 75(8):2169–2173. doi: 10.1002/1097-0142(19950415)75:8<2169::AID-CNCR2820750822>3.0.CO;2-H CrossRefGoogle Scholar
  22. 22.
    Katagiri K, Hashizume M, Ariga K et al (2007) Preparation and characterization of a novel organic-inorganic nanohybrid “cerasome” formed with a liposomal membrane and silicate surface. Chem Eur J 13(18):5272–5281. doi: 10.1002/chem.200700175 CrossRefGoogle Scholar
  23. 23.
    Matsui K, Sando S, Sera T et al (2006) Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size. J Am Chem Soc 128(10):3114–3115. doi: 10.1021/ja058016 CrossRefGoogle Scholar
  24. 24.
    Yue XL, Dai ZF (2014) Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers. Adv Colloid Interf 207(S1):32–42. doi: 10.1016/j.cis.2013.11.014 CrossRefGoogle Scholar
  25. 25.
    Thomas LA, Simon SJ, Kent J (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44(1):68–97. doi: 10.1016/j.plipres.2004.12.001 CrossRefGoogle Scholar
  26. 26.
    Kaasgaard T, Andresen TL (2010) Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 7(2):225–243. doi: 10.1517/17425240903427940 CrossRefGoogle Scholar
  27. 27.
    Damen J, Regts J, Scherphof G (1981) Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high-density lipoproteins: dependence on cholesterol and phospholipid composition. Biochim Biophys Acta 665(3):538–545. doi: 10.1016/0005-2760(81)90268-X CrossRefGoogle Scholar
  28. 28.
    Senior J, Gregoriadis G (1982) Is half-life of circulating liposomes determined by changes in their permeability? FEBS Lett 145(1):109–114. doi: 10.1016/0014-5793(82)81216-7 CrossRefGoogle Scholar
  29. 29.
    Scherphof GL (1985) Uptake and intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in vitro. Ann N Y Acad Sci 446:368–384. doi: 10.1111/j.1749-6632.1985.tb18414.x CrossRefGoogle Scholar
  30. 30.
    Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113(2):171–199CrossRefGoogle Scholar
  31. 31.
    Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine. N Engl J Med 295(14):765–770CrossRefGoogle Scholar
  32. 32.
    Senior JH (1987) Fate and behavior of liposomes in vivo – a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3(2):123–193Google Scholar
  33. 33.
    Fugman D, Shirak K, Jackson R et al (1984) Lipoprotein lipase-A2-catalyzed and phospholipase-A2-catalyzed hydrolysis of phospholipid-vesicles with an encapsulated fluorescent dye — effects of apolipoproteins. Biochim Biophys Acta 795(2):191–195CrossRefGoogle Scholar
  34. 34.
    Chonn A, Semple SC, Cullis PR (1995) Beta 2-glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of “non-self” particles. J Biol Chem 270(43):25845–25849CrossRefGoogle Scholar
  35. 35.
    Oja CDM, Semple SC, Chonn A et al (1996) Influence of dose on liposome clearance: critical role of blood proteins. Biochim Biophys Acta 1281(1):31–37CrossRefGoogle Scholar
  36. 36.
    Papahadjopoulos D, Allen TM, Gabizon A et al (1991) Sterically stabilized liposomes – improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88(24):11460–11464CrossRefGoogle Scholar
  37. 37.
    Liu D, Mori A, Huang L (1992) Role of liposome size and res blockade in controlling biodistribution and tumor uptake of Gm1-containing liposomes. Biochim Biophys Acta 1104(1):95–101CrossRefGoogle Scholar
  38. 38.
    Gabizon A (2001) Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7(2):223–225Google Scholar
  39. 39.
    Allen TM, Stuart D (1998) Liposome pharmacokinetics. Classical, sterically stabilized, cationic liposomes and immunoliposomes. In: Janoff A (ed) Liposomes: rational design, 1st edn. Marcel Dekker, New York, pp 63–87Google Scholar
  40. 40.
    Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146. doi: 10.1016/j.jconrel.2010.08.027 CrossRefGoogle Scholar
  41. 41.
    Kievit FM, Miqin Z (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23(36):H217–H247. doi: 10.1002/adma.201102313 CrossRefGoogle Scholar
  42. 42.
    Elbayoumi TA, Torchilin VP (2006) Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: Gamma-imaging studies. Eur J Nucl Med Mol Imaging 33(10):1196–1205CrossRefGoogle Scholar
  43. 43.
    Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9(2):E128–E147CrossRefGoogle Scholar
  44. 44.
    Petersen AL, Binderup T, Jølck RI (2012) Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. J Control Release 160(2):254–263. doi: 10.1016/j.jconrel.2011.12.038 CrossRefGoogle Scholar
  45. 45.
    Erdogan S, Roby A, Torchilin VP (2006) Enhanced tumor visualization by gamma-scintigraphy with 111In-labeled polychelating-polymer-containing immunoliposomes. Mol Pharm 3(5):525–530CrossRefGoogle Scholar
  46. 46.
    Bartlett DW, Su H, Hildebrandt IJ (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104(39):15549–15554CrossRefGoogle Scholar
  47. 47.
    Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822CrossRefGoogle Scholar
  48. 48.
    Liang XL, Yue XL, Dai ZF et al (2011) Photoresponsive liposomal nanohybrid cerasomes. Chem Commun (Camb) 47(16):4751–4753. doi: 10.1039/c1cc00063b CrossRefGoogle Scholar
  49. 49.
    Weinstein JN, Magin RL, Yatvin MB et al (1979) Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Sciences 204(4389):188–191CrossRefGoogle Scholar
  50. 50.
    Alvarez-Lorenzo C, Bromberg L, Concheiro A (2009) Light-sensitive intelligent drug delivery systems. Photochem Photobiol 85(4):848–860. doi: 10.1111/j.1751-1097.2008.00530.x CrossRefGoogle Scholar
  51. 51.
    Yu B, Tai HC, Xue W et al (2010) Receptor targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298. doi: 10.3109/09687688.2010.521200 CrossRefGoogle Scholar
  52. 52.
    Carpentier A, Chauvet D, Reina V (2012) MR-guided Laser-Induced Thermal Therapy (LITT) for recurrent glioblastomas. Lasers Surg Med 44(5):361–368. doi: 10.1002/lsm.22025 CrossRefGoogle Scholar
  53. 53.
    Fatehi D, van der Zee J, de Bruijne M et al (2007) RF-power and temperature data analysis of 444 patients with primary cervical cancer: deep hyperthermia using the sigma-60 applicator is reproducible. Int J Hyperthermia 23(8):623–643CrossRefGoogle Scholar
  54. 54.
    Johnson JE, Neuman DG, Maccarini PF et al (2006) Evaluation of a dual-arm Archimedean spiral array formicrowave hyperthermia. Int J Hyperthermia 22(6):475–490CrossRefGoogle Scholar
  55. 55.
    Salomir R, Palussiere J, Vimeux FC et al (2000) Local hyperthermia with MR-guided focused ultrasound: spiral trajectory of the focal point optimized for temperature uniformity in the target region. J Magn Reson Imaging 12(4):571–583CrossRefGoogle Scholar
  56. 56.
    Hamano N, Negishi Y, Takatori K et al (2014) Combination of bubble liposomes and High-Intensity Focused Ultrasound (HIFU) enhanced antitumor effect by tumor ablation. Biol Pharm Bull 37(1):174–177CrossRefGoogle Scholar
  57. 57.
    Grülla H, Langereis S (2012) Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 161(2):317–327. doi: 10.1016/j.jconrel.2012.04.041 CrossRefGoogle Scholar
  58. 58.
    Evans E, Needham D (1987) Physical-properties of surfactant bilayer-membranes—thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 91(16):4219–4228. doi: 10.1021/j100300a003 CrossRefGoogle Scholar
  59. 59.
    Cruzeir-Hansson L, Mouritsen OG (1988) Passive ion permeability of lipid membranes modeled via lipid domain interfacial area. Biochim Biophys Acta 944(1):63–72CrossRefGoogle Scholar
  60. 60.
    Ruocco MJ, Siminovitch DJ, Griffin RG (1985) Comparative study of the gel phases of ether-linked and ester-linked phosphatidylcholines. Biochemistry (Mosc) 24(10):2406–2411CrossRefGoogle Scholar
  61. 61.
    Mabrey S, Sturtevant JM (1976) Investigation of phase-transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A 73(11):3862–3866CrossRefGoogle Scholar
  62. 62.
    Bratton DL, Harris RA, Clay KL et al (1988) Effects of platelet activating factor and related lipids on phase-transition of dipalmitoylphosphatidylcholine. Biochim Biophys Acta 941(1):76–82CrossRefGoogle Scholar
  63. 63.
    Needham D, Dewhirst MW (2001) The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 53(2):285–305CrossRefGoogle Scholar
  64. 64.
    Chelsea D, Landon CD, Park JY et al (2011) Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomedicine J 3:38–64Google Scholar
  65. 65.
    Banno B, Ickenstein LM, Chiu GNC et al (2009) The functional roles of poly(ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipid-containing thermosensitive liposomes in vitro and in vivo. J Pharm Sci 99(5):2295–2308. doi: 10.1002/jps.21988 CrossRefGoogle Scholar
  66. 66.
    Needham D, Park JY, Wright AM et al (2013) Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition (lysolipid and DSPE–PEG2000) on the thermal transition and release of doxorubicin. Faraday Discuss 161:515–534. doi: 10.1039/c2fd20111a CrossRefGoogle Scholar
  67. 67.
    Ickenstein LM, Arfvidsson MC, Needham D et al (2003) Disc formation in cholesterol-free liposomes during phase transition. Biochim Biophys Acta 1614(2):135–138CrossRefGoogle Scholar
  68. 68.
    Lindner LH, Eichhorn ME, Eibl H et al (2004) Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res 10(6):2168–2178. doi: 10.1158/1078-0432 CrossRefGoogle Scholar
  69. 69.
    Hossann M, Wang TT, Wiggenhorn M et al (2010) Size of thermosensitive liposomes influences content release. J Control Release 147(3):436–443. doi: 10.1016/j.jconrel.2010.08.013 CrossRefGoogle Scholar
  70. 70.
    Needham D, Dewhirst MW (2001) The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 53(3):285–305. doi: 10.1016/S0169-409X(01)00233-2 CrossRefGoogle Scholar
  71. 71.
    Gasselhuber A, Dreher MR, Negussie A et al (2010) Mathematical spatio-temporal model of drug delivery from low temperature sensitive liposomes during radiofrequency tumour ablation. Int J Hyperthermia 26(5):499–513. doi: 10.3109/02656731003623590 CrossRefGoogle Scholar
  72. 72.
    Park SM, Kim MS, Park SJ et al (2013) Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release 170(3):373–379. doi: 10.1016/j.jconrel.2013.06.003 CrossRefGoogle Scholar
  73. 73.
    Ter Haar G, Coussios C (2007) High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia 23(2):89–104. doi: 10.1080/02656730601186138 CrossRefGoogle Scholar
  74. 74.
    Tempany CMC, McDannold NJ, Hynynen K et al (2011) Focused ultrasound surgery in oncology: overview and principles. Radiology 259(1):39–56. doi: 10.1148/radiol.11100155 CrossRefGoogle Scholar
  75. 75.
    McDannold NJ, King RL, Jolesz FA et al (2000) Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 216(2):517–523, doi:
  76. 76.
    Kennedy JE (2005) High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5(4):321–327. doi: 10.1038/nrc1591 CrossRefGoogle Scholar
  77. 77.
    Miller DL, Song JM (2003) Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol 29(6):887–893. doi: 10.1016/S0301-5629(03)00031-0 CrossRefGoogle Scholar
  78. 78.
    Frenkel V, Etherington A, Greene M et al (2006) Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 13(4):469–479. doi: 10.1016/j.acra.2005.08.024 CrossRefGoogle Scholar
  79. 79.
    Dromi S, Frenkel V, Luk A et al (2007) Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 13(9):2722–2727. doi: 10.1158/1078-0432.CCR-06-2443 CrossRefGoogle Scholar
  80. 80.
    Negussie AH, Yarmolenko PS, Partanen A et al (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia 27(2):140–155. doi: 10.3109/02656736.2010.528140 CrossRefGoogle Scholar
  81. 81.
    Cline HE, Hynynen K, Hardy CJ et al (1994) MR temperature mapping of focused ultrasound surgery. Magn Reson Med 31(6):628–636. doi: 10.1002/mrm.1910310608 CrossRefGoogle Scholar
  82. 82.
    Voogt MJ, Trillaud H, Kim YS et al (2012) Volumetric feedback ablation of uterine fibroids using magnetic resonance-guided high intensity focused ultrasound therapy. Eur Radiol 22(2):411–417. doi: 10.1007/s00330-011-2262-8 CrossRefGoogle Scholar
  83. 83.
    Hildebrandt B, Wust P, Ahlers O et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56. doi: 10.1016/S1040-8428(01)00179-2 CrossRefGoogle Scholar
  84. 84.
    de Smet M, Heijman E, Langereis S et al (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150(1):102–110. doi: 10.1016/j.jconrel.2010.10.036 CrossRefGoogle Scholar
  85. 85.
    de Smet M, Langereis S, van den Bosch S et al (2013) SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J Control Release 169(1-2):82–90. doi: 10.1016/j.jconrel.2013.04.005 CrossRefGoogle Scholar
  86. 86.
    Proffitt RT, Williams LE, Presant CA et al (1983) Tumor-imaging potential of liposomes loaded with In-111-NTA: biodistribution in mice. J Nucl Med 24(1):45–51Google Scholar
  87. 87.
    Presant CA, Turner AF, Proffitt RT (1994) Potential for improvement in clinical decision-making: tumor imaging with In-111 labeled liposomes results of a phase II-III study. J Liposome Res 4(2):985–1008. doi: 10.3109/08982109409018615 CrossRefGoogle Scholar
  88. 88.
    Awasthi VD, Goins B, Klipper R et al (1998) Dual radiolabeled liposomes: biodistribution studies and localization of focal sites of infection in rats. Nucl Med Biol 25(2):155–160. doi: 10.1016/S0969-8051(97)00162-5 CrossRefGoogle Scholar
  89. 89.
    Gambhir SS, Herschman HR, Cherry SR et al (2000) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2(1-2):118–138. doi: 10.1038/sj.neo.7900083 CrossRefGoogle Scholar
  90. 90.
    Marik J, Tartis MS, Zhang H et al (2007) Long-circulating liposomes radiolabeled with [18F fluorodipalmitin ([18F]FDP). Nucl Med Biol 34(2):165–171. doi: 10.1016/j.nucmedbio.2006.12.004
  91. 91.
    Dams ETM, Oyen WJG, Boerman OC et al (2000) 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation clinical evaluation. J Nucl Med 41(4):622–630Google Scholar
  92. 92.
    Presant CA, Blayney D, Proffitt RT et al (1990) Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet 335(8701):1307–1309. doi: 10.1016/0140-6736(90)91188-G CrossRefGoogle Scholar
  93. 93.
    Goins BA (2008) Radiolabeled lipid nanoparticles for diagnostic imaging. Expert Opin Med Diagn 2(7):853–873. doi: 10.1517/17530059.2.7.853 CrossRefGoogle Scholar
  94. 94.
    Phillips WT (1999) Delivery of gamma-imaging agents by liposomes. Adv Drug Deliv Rev 37(1–3):13–32. doi: 10.1016/S0169-409X(98)00108-2 CrossRefGoogle Scholar
  95. 95.
    Holmberg E, Maruyama K, Litzinger DC et al (1989) Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem Biophys Res Commun 165(3):1272–1278. doi: 10.1016/0006-291X(89)92740-X CrossRefGoogle Scholar
  96. 96.
    Morgan JR, Williams KE, Davies RL et al (1981) Localisation of experimental staphylococcal abscesses by 99mTc-technetium-labelled liposomes. J Med Microbiol 14(2):213–217. doi: 10.1099/00222615-14-2-213 CrossRefGoogle Scholar
  97. 97.
    Laverman P, Dams ETM, Oyen WJG et al (1999) A novel method to label liposomes with Tc-99m by the hydrazino nicotinyl derivative. J Nucl Med 40(1):192–197Google Scholar
  98. 98.
    Goins BA, Phillips WT (2001) The use of scintigraphic imaging as a tool in the development of liposome formulations. Prog Lipid Res 40(1-2):95–123. doi: 10.1016/S0163-7827(00)00014-X CrossRefGoogle Scholar
  99. 99.
    Petersen AL, Binderup T, Rasmussen P et al (2011) 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 32(9):2334–2341. doi: 10.1016/j.biomaterials.2010.11.059 CrossRefGoogle Scholar
  100. 100.
    Beaumier PL, Hwang KJ (1982) An efficient method for loading indium-111 into liposomes using acetylacetone. J Nucl Med 23(9):810–815Google Scholar
  101. 101.
    Gabizon A, Huberty J, Straubinger RM et al (1988) An improved method for in vivo tracing and imaging of liposomes using a gallium 67–deferoxamine complex. J Liposome Res 1(1):123–135. doi: 10.3109/08982108809035986 CrossRefGoogle Scholar
  102. 102.
    Bao AD, Goins B, Klipper R et al (2004) Direct Tc-99m labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther 308(2):419–425. doi: 10.1124/jpet.103.059535 CrossRefGoogle Scholar
  103. 103.
    Vallabhajosula S (2009) Molecular imaging: radiopharmaceuticals for PET and SPECT, 1st edn. Springer, New YorkCrossRefGoogle Scholar
  104. 104.
    Food and Drug Administration, U.S. FDA’s Guidance (2011) PET drugs – current good manufacturing practice (cGMP). Washington, DC.
  105. 105.
    Willmann JK, van Bruggen N, Dinkelborg LM et al (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7(7):591–607. doi: 10.1038/nrd2290 CrossRefGoogle Scholar
  106. 106.
    Gedda L, Fondell A, Lundqvist H et al (2012) Experimental radionuclide therapy of HER2-expressing xenografts using two-step targeting nuclisome particles. J Nucl Med 53(3):480–487. doi: 10.2967/jnumed.111.096891 CrossRefGoogle Scholar
  107. 107.
    Diamandis M, White NMA, Yousef GM (2010) Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res 8(9):1175–1187. doi: 10.1158/1541-7786.MCR-10-0264 CrossRefGoogle Scholar
  108. 108.
    Yu T, Chan KWY, Anonuevo A et al (2015) Liposome-based mucus-penetrating particles (MPP) for mucosal theranostics: demonstration of diamagnetic chemical exchange saturation transfer (diaCEST) magnetic resonance imaging (MRI). Nanomedicine-Nanotechnol Biol Med 1(2):401–405. doi: 10.1016/j.nano.2014.09.019 CrossRefGoogle Scholar
  109. 109.
    Park JH, Cho HJ, Yoon HY (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 174:98–108. doi: 10.1016/j.jconrel.2013.11.016 CrossRefGoogle Scholar
  110. 110.
    Mulder WJM, Strijkers GJ, van Tilborg GAF et al (2009) Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Acc Chem Res 42(7):904–914. doi: 10.1021/ar800223c CrossRefGoogle Scholar
  111. 111.
    Kim J, Pandya DN, Lee W et al (2014) Vivid tumor imaging utilizing liposome-carried bimodal radiotracer. ACS Med Chem Lett 5(4):390–394. doi: 10.1021/ml400513g CrossRefGoogle Scholar
  112. 112.
    Li SH, Goins B, Zhang LJ et al (2012) Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 23(6):1322–1332. doi: 10.1021/bc300175d CrossRefGoogle Scholar
  113. 113.
    Ma Y, Dai ZF, Gao YG et al (2011) Liposomal architecture boosts biocompatibility of nanohybrid cerasomes. Nanotoxicology 5(4):622–635. doi: 10.3109/17435390.2010.546950 CrossRefGoogle Scholar
  114. 114.
    Liang XL, Li XD, Jing LJ et al (2013) Design and synthesis of lipidic organoalkoxysilane for self-assembly of liposomal nanohybrid cerasomes with controlled drug release properties. Chem Eur J 19(47):16113–16121. doi: 10.1002/chem.201302518 CrossRefGoogle Scholar
  115. 115.
    Jin YS, Yue XL, Zhang QY et al (2012) Cerasomal doxorubicin with long-term storage stability and controllable sustained release. Acta Biomater 8(9):3372–3380. doi: 10.1016/j.actbio.2012.05.022 CrossRefGoogle Scholar
  116. 116.
    Cao Z, Yue XL, Jin YS et al (2012) Modulation of release of paclitaxel from composite cerasomes. Colloids Surf B Biointerfaces 98:97–104. doi: 10.1016/j.colsurfb.2012.05.001 CrossRefGoogle Scholar
  117. 117.
    Liang XL, Gao J, Jiang LD et al (2015) Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for HIFU triggered local chemotherapy of cancer. ACS Nano 9(2):1280–1293. doi: 10.1021/nn507482w CrossRefGoogle Scholar
  118. 118.
    Matsui K, Sasaki Y, Komatsu T et al (2007) RNAi gene silencing using cerasome as a viral-size siRNA-carrier free from fusion and cross-linking. Bioorg Med Chem Lett 17(14):3935–3938. doi: 10.1016/j.bmcl.2007.04.097 CrossRefGoogle Scholar
  119. 119.
    Li YY, Zheng SQ, Liang XL et al (2014) Doping hydroxylated cationic lipid into PEGylated cerasome boosts in vivo siRNA transfection efficacy. Bioconjug Chem 25(11):2055–2066. doi: 10.1021/bc500414e CrossRefGoogle Scholar
  120. 120.
    Cao Z, Yue XL, Li XD et al (2013) Stabilized magnetic cerasomes for drug delivery. Langmuir 29(48):14976–14983. doi: 10.1021/la401965a CrossRefGoogle Scholar
  121. 121.
    van Tilborg GAF, Mulder WJM, Deckers N et al (2006) Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis. Bioconjug Chem 17(3):741–749. doi: 10.1021/bc0600259 CrossRefGoogle Scholar
  122. 122.
    Giri J, Thakurta SG, Bellare J et al (2005) Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles. J Magn Magn Mater 293(1):62–68. doi: 10.1016/j.jmmm.2005.01.044 CrossRefGoogle Scholar
  123. 123.
    Kuznetsov AA, Filippov VI, Alyautdin RN et al (2001) Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. J Magn Magn Mater 225(1-2):95–100. doi: 10.1016/S0304-8853(00)01235-X CrossRefGoogle Scholar
  124. 124.
    Needham D, Anyarambhatla G, Kong G et al (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60(5):1197–1201Google Scholar
  125. 125.
    Amstad E, Kohlbrecher J, Muller E et al (2009) Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11(4):1664–1670. doi: 10.1021/nl2001499 CrossRefGoogle Scholar
  126. 126.
    Jin YD, Gao XH (2009) Spectrally tunable leakage-free gold nanocontainers. J Am Chem Soc 131(49):17774–17776. doi: 10.1021/ja9076765 CrossRefGoogle Scholar
  127. 127.
    Ma Y, Liang XL, Tong S et al (2013) Gold nanoshelled nanomicelles for potential MRI imaging, light-triggered drug release and photothermal therapy. Adv Funct Mater 23(7):815–822. doi: 10.1002/adfm.201201663 CrossRefGoogle Scholar
  128. 128.
    Li SZ, Ma Y, Yue XL (2010) Encapsulation of quantum dots inside liposomal hybrid cerasome using a one-pot procedure. J Dispers Sci Technol 31(12):1727–1731. doi: 10.1080/01932690903542842 CrossRefGoogle Scholar
  129. 129.
    Derycke ASL, de Witte PAM (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56(1):17–30. doi: 10.1016/j.addr.2003.07.014 CrossRefGoogle Scholar
  130. 130.
    Roy I, Ohulchanskyy TY, Pudavar HE et al (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125(26):7860–7865. doi: 10.1021/ja0343095 CrossRefGoogle Scholar
  131. 131.
    Liang XL, Li XD, Yue XL et al (2011) Conjugation of porphyrin to nanohybrid cerasomes for photodynamic therapy of cancer. Angew Chem Int Ed 50(49):11622–11627. doi: 10.1002/anie.201103557 CrossRefGoogle Scholar
  132. 132.
    Liang XL, Li XD, Jing LJ et al (2014) Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy. Biomaterials 35(24):6379–6388. doi: 10.1016/j.biomaterials.2014.04.094 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations