Near-Infrared Light-Mediated Gold Nanoplatforms for Cancer Theranostics

  • Liming Wang
  • Yingying Xu
  • Chunying ChenEmail author
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 6)


In the past decade, great advances have been achieved for the biomedical application of gold (Au) nanostructures. Due to their unique physicochemical properties, Au nanostructures have been extensively explored for their use in cancer cell imaging, photothermal therapy, as well as drug/gene delivery. The facile control of synthesis and surface functionalization help the construction of multifunctional Au nanostructures for cancer diagnosis and treatment. Recently, Au nanostructure-based theranostic platforms have been extensively explored, and great advantages have been demonstrated. This chapter summarizes the recent progress of Au nanostructures as contrast agents for cancer imaging, as therapeutic composites for photothermal therapy and drug/gene delivery, and as multifunctional theranostic platform for cancer. The surface functionalization of Au nanostructures including noncovalent and covalent modification will also be discussed. We focus on the near-infrared (NIR) light-mediated cancer theranostics using Au nanostructures including Au nanoshells (AuNSs), Au nanorods (AuNRs), hollow Au nanospheres (HAuNSs), and Au nanocages (AuNCs).


Au nanostructures Imaging Photothermal therapy Surface plasmon resonance Cancer theranostics 



This work was supported by grants from the National Basic Research Program of China (973 Programs 2011CB933401 and 2012CB934003), National Major Scientific Instruments Development Project (2011YQ03013406), the National Natural Science Foundation of China (21320102003, 11205166) International Science & Technology Cooperation Program of MOST (2013DFG32340), and the National Science Fund for Distinguished Young Scholars (11425520).


  1. 1.
    Kintzel PE, Dorr RT (1995) Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function. Cancer Treat Rev 21:33–64CrossRefGoogle Scholar
  2. 2.
    Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13:5043–5054CrossRefGoogle Scholar
  3. 3.
    Schimmel KJ, Richel DJ, van den Brink RB, Guchelaar HJ (2004) Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev 30:181–191CrossRefGoogle Scholar
  4. 4.
    Moses MA, Brem H, Langer R (2003) Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 4:337–341CrossRefGoogle Scholar
  5. 5.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726CrossRefGoogle Scholar
  6. 6.
    Shimizu T, Teranishi T, Hasegawa S, Miyake M (2003) Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J Phys Chem B 107:2719–2724CrossRefGoogle Scholar
  7. 7.
    Liang HP, Wan LJ, Bai CL, Jiang L (2005) Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J Phys Chem B 109:7795–7800CrossRefGoogle Scholar
  8. 8.
    Xu XD, Cortie MB (2006) Shape change and color gamut in gold nanorods, dumbbells, and dog bones. Adv Funct Mater 16:2170–2176CrossRefGoogle Scholar
  9. 9.
    Lu XM, Au L, McLellan J, Li ZY, Marquez M, Xia YN (2007) Fabrication of cubic nanocages and nanoframes by dealloying au/ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett 7:1764–1769CrossRefGoogle Scholar
  10. 10.
    Zhang JA, Langille MR, Personick ML, Zhang K, Li SY, Mirkin CA (2010) Concave cubic gold nanocrystals with high-index facets. J Am Chem Soc 132:14012–14014CrossRefGoogle Scholar
  11. 11.
    Qiu Y, Liu Y, Wang LM et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of au nanorods. Biomaterials 31:7606–7619CrossRefGoogle Scholar
  12. 12.
    Sun CJ, Yang H, Yuan Y et al (2011) Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J Am Chem Soc 133:8617–8624CrossRefGoogle Scholar
  13. 13.
    He WW, Liu Y, Yuan JS et al (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32:1139–1147CrossRefGoogle Scholar
  14. 14.
    Wang LM, Lin XY, Wang J et al (2014) Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv Funct Mater 24:4229–4239CrossRefGoogle Scholar
  15. 15.
    Personick ML, Langille MR, Zhang J, Harris N, Schatz GC, Mirkin CA (2011) Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J Am Chem Soc 133:6170–6173CrossRefGoogle Scholar
  16. 16.
    Cheng LC, Huang JH, Chen HM et al (2012) Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22:2244–2253CrossRefGoogle Scholar
  17. 17.
    Jiang XM, Wang LM, Wang J, Chen CY (2012) Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment. Appl Biochem Biotechnol 166:1533–1551CrossRefGoogle Scholar
  18. 18.
    Cheng LC, Jiang XM, Wang J, Chen CY, Liu RS (2013) Nano-bio effects: interaction of nanomaterials with cells. Nanoscale 5:3547–3569CrossRefGoogle Scholar
  19. 19.
    Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181CrossRefGoogle Scholar
  20. 20.
    Mie G (1908) Beitrage zur optik truber medien speziell kolloidaler metallosungen. Ann Phys 25:377–445zbMATHCrossRefGoogle Scholar
  21. 21.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  22. 22.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  23. 23.
    Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRefGoogle Scholar
  24. 24.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  25. 25.
    Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia YN (2007) Gold nanocages for biomedical applications. Adv Mater 19:3177–3184CrossRefGoogle Scholar
  26. 26.
    Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851CrossRefGoogle Scholar
  27. 27.
    Murphy CJ, Gole AM, Stone JW et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRefGoogle Scholar
  28. 28.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  29. 29.
    Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225CrossRefGoogle Scholar
  30. 30.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453CrossRefGoogle Scholar
  31. 31.
    Hu M, Chen J, Li ZY et al (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094CrossRefGoogle Scholar
  32. 32.
    Haes AJ, Stuart DA, Nie S, Van Duyne RP (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 14:355–367CrossRefGoogle Scholar
  33. 33.
    Austin LA, Mackey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88:1391–1417CrossRefGoogle Scholar
  34. 34.
    Nie X, Chen CY (2012) Au nanostructures: an emerging prospect in cancer theranostics. Sci China Life Sci 55:872–883CrossRefGoogle Scholar
  35. 35.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586CrossRefGoogle Scholar
  36. 36.
    Jain PK, Huang X, El-Sayed IH, El-Sayad MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118CrossRefGoogle Scholar
  37. 37.
    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory. Anal Biochem 262:137–156CrossRefGoogle Scholar
  38. 38.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRefGoogle Scholar
  39. 39.
    Sokolov K, Follen M, Aaron J et al (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004Google Scholar
  40. 40.
    El-Sayed IH, Huang XH, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834CrossRefGoogle Scholar
  41. 41.
    Qian W, Huang XH, Kang B, El-Sayed MA (2010) Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. J Biomed Opt 15:046025-1-9CrossRefGoogle Scholar
  42. 42.
    Eghtedari M, Liopo AV, Copland JA, Oraevslty AA, Motamedi M (2009) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9:287–291CrossRefGoogle Scholar
  43. 43.
    Hu R, Yong KT, Roy I, Ding H, He S, Prasad PN (2009) Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells. J Phys Chem C 113:2676–2684CrossRefGoogle Scholar
  44. 44.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  45. 45.
    Oyelere AK, Chen PC, Huang XH, El-Sayed IH, El-Sayed MA (2007) Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug Chem 18:1490–1497CrossRefGoogle Scholar
  46. 46.
    Ding H, Yong KT, Roy I et al (2007) Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J Phys Chem C 111:12552–12557CrossRefGoogle Scholar
  47. 47.
    Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132:1517–1519CrossRefGoogle Scholar
  48. 48.
    Tong L, Wei QS, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85:21–32CrossRefGoogle Scholar
  49. 49.
    Park J, Estrada A, Sharp K et al (2008) Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express 16:1590–1599CrossRefGoogle Scholar
  50. 50.
    Maiorano G, Sabella S, Sorce B et al (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491CrossRefGoogle Scholar
  51. 51.
    Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7:941–945CrossRefGoogle Scholar
  52. 52.
    Puvanakrishnan P, Diagaradjane P, Kazmi SMS, Dunn AK, Krishnan S, Tunnell JW (2012) Narrow band imaging of squamous cell carcinoma tumors using topically delivered anti-EGFR antibody conjugated gold nanorods. Lasers Surg Med 44:310–317CrossRefGoogle Scholar
  53. 53.
    Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19:3136–3141CrossRefGoogle Scholar
  54. 54.
    Charan S, Sanjiv K, Singh N et al (2012) Development of chitosan oligosaccharide-modified gold nanorods for in vivo targeted delivery and noninvasive imaging by NIR irradiation. Bioconjug Chem 23:2173–2182CrossRefGoogle Scholar
  55. 55.
    Zhang YA, Yu J, Birch DJS, Chen Y (2010) Gold nanorods for fluorescence lifetime imaging in biology. J Biomed Opt 15:020504CrossRefGoogle Scholar
  56. 56.
    Wang LM, Liu Y, Li W et al (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11:772–780MathSciNetCrossRefGoogle Scholar
  57. 57.
    Yuan HK, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23:075102CrossRefGoogle Scholar
  58. 58.
    Park J, Estrada A, Schwartz JA et al (2010) Intra-organ biodistribution of gold nanoparticles using intrinsic two-photon-induced photoluminescence. Lasers Surg Med 42:630–639CrossRefGoogle Scholar
  59. 59.
    Wang YC, Xu JB, Xia XH et al (2012) Sv119-gold nanocage conjugates: a new platform for targeting cancer cells via sigma-2 receptors. Nanoscale 4:421–424CrossRefGoogle Scholar
  60. 60.
    Gao L, Vadakkan TJ, Nammalvar V (2011) Nanoshells for in vivo imaging using two-photon excitation microscopy. Nanotechnology 22:365102CrossRefGoogle Scholar
  61. 61.
    Au L, Zhang Q, Cobley CM et al (2010) Quantifying the cellular uptake of antibody-conjugated au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 4:35–42CrossRefGoogle Scholar
  62. 62.
    Yuan Z, Wu CF, Zhao HZ, Jiang HB (2005) Imaging of small nanoparticle-containing objects by finite-element-based photoacoustic tomography. Opt Lett 30:3054–3056CrossRefGoogle Scholar
  63. 63.
    Li PC, Huang SW, Wei CW, Chiou YC, Chen CD, Wang CRC (2005) Photoacoustic flow measurements by use of laser-induced shape transitions of gold nanorods. Opt Lett 30:3341–3343CrossRefGoogle Scholar
  64. 64.
    Wang YW, Xie XY, Wang XD et al (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4:1689–1692CrossRefGoogle Scholar
  65. 65.
    Mallidi S, Larson T, Tam J et al (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825–2831CrossRefGoogle Scholar
  66. 66.
    Kim C, Cho EC, Chen JY et al (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4:4559–4564CrossRefGoogle Scholar
  67. 67.
    Cai X, Li WY, Kim CH, Yuan YC, Wang LHV, Xia YN (2011) In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS Nano 5:9658–9667CrossRefGoogle Scholar
  68. 68.
    Li PC, Wang CRC, Shieh DB et al (2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16:18605–18615CrossRefGoogle Scholar
  69. 69.
    Yang SH, Ye F, Xing D (2012) Intracellular label-free gold nanorods imaging with photoacoustic microscopy. Opt Express 20:10370–10375CrossRefGoogle Scholar
  70. 70.
    Jokerst JV, Thangaraj M, Kempen PJ, Sinclair R, Gambhir SS (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6:5920–5930CrossRefGoogle Scholar
  71. 71.
    von Maltzahn G, Park JH, Agrawal A et al (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69:3892–3900CrossRefGoogle Scholar
  72. 72.
    Luo T, Huang P, Gao G et al (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19:17030–17039CrossRefGoogle Scholar
  73. 73.
    Huang P, Bao L, Zhang CL et al (2011) Folic acid-conjugated silica-modified gold nanorods for x-ray/ct imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32:9796–9809CrossRefGoogle Scholar
  74. 74.
    Lozano N, Al-Jamal WT, Taruttis A et al (2012) Liposome-gold nanorod hybrids for high-resolution visualization deep in tissues. J Am Chem Soc 134:13256–13258CrossRefGoogle Scholar
  75. 75.
    Zagaynova EV, Shirmanova MV, Kirillin MY et al (2008) Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 53:4995–5009CrossRefGoogle Scholar
  76. 76.
    Oldenburg AL, Hansen MN, Ralston TS, Wei A, Boppart SA (2009) Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. J Mater Chem 19:6407–6411CrossRefGoogle Scholar
  77. 77.
    Jung Y, Reif R, Zeng YG, Wang RK (2011) Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes. Nano Lett 11:2938–2943CrossRefGoogle Scholar
  78. 78.
    Kim CS, Wilder-Smith P, Ahn YC, Liaw LHL, Chen ZP, Kwon YJ (2009) Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt 14:034008CrossRefGoogle Scholar
  79. 79.
    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  80. 80.
    Moskovits M (2006) Surface-enhanced Raman spectroscopy: a brief perspective. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering: physics and applications. Springer, Berlin\Heidelberg, pp 1–17Google Scholar
  81. 81.
    Chon H, Lee S, Son SW, Oh CH, Choo J (2009) Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 81:3029–3034CrossRefGoogle Scholar
  82. 82.
    Bishnoi SW, Lin YJ, Tibudan M et al (2011) SERS biodetection using gold-silica nanoshells and nitrocellulose membranes. Anal Chem 83:4053–4060CrossRefGoogle Scholar
  83. 83.
    Wu L, Wang ZY, Zong SF et al (2013) Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using sers technique. Analyst 138:3450–3456CrossRefGoogle Scholar
  84. 84.
    Wang GF, Lipert RJ, Jain M et al (2011) Detection of the potential pancreatic cancer marker muc4 in serum using surface-enhanced Raman scattering. Anal Chem 83:2554–2561CrossRefGoogle Scholar
  85. 85.
    Li M, Cushing SK, Zhang JM et al (2013) Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7:4967–4976CrossRefGoogle Scholar
  86. 86.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597CrossRefGoogle Scholar
  87. 87.
    Kang B, Austin LA, El-Sayed MA (2012) Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy. Nano Lett 12:5369–5375CrossRefGoogle Scholar
  88. 88.
    Yigit MV, Zhu LY, Ifediba MA et al (2011) Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano 5:1056–1066CrossRefGoogle Scholar
  89. 89.
    Wang X, Qian XM, Beitler JJ et al (2011) Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 71:1526–1532CrossRefGoogle Scholar
  90. 90.
    Pitsillides CM, Joe EK, Wei XB, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032CrossRefGoogle Scholar
  91. 91.
    El-Sayed IH, Huang XH, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-egfr antibody conjugated gold nanoparticles. Cancer Lett 239:129–135CrossRefGoogle Scholar
  92. 92.
    Rejiya CS, Kumar J, Raji V, Vibin M, Abraham A (2012) Laser immunotherapy with gold nanorods causes selective killing of tumour cells. Pharmacol Res 65:261–269CrossRefGoogle Scholar
  93. 93.
    Dickerson EB, Dreaden EC, Huang XH et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Lett 269:57–66CrossRefGoogle Scholar
  94. 94.
    Li ZM, Huang P, Zhang XJ et al (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7:94–104CrossRefGoogle Scholar
  95. 95.
    Zhang ZJ, Wang LM, Wang J et al (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24:1418–1423CrossRefGoogle Scholar
  96. 96.
    Guo LH, Xu Y, Ferhan AR, Chen GN, Kim DH (2013) Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J Am Chem Soc 135:12338–12345CrossRefGoogle Scholar
  97. 97.
    Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554CrossRefGoogle Scholar
  98. 98.
    Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86:165–172CrossRefGoogle Scholar
  99. 99.
    Day ES, Thompson PA, Zhang LN et al (2011) Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neurooncol 104:55–63CrossRefGoogle Scholar
  100. 100.
    Diagaradjane P, Shetty A, Wang JC et al (2008) Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett 8:1492–1500CrossRefGoogle Scholar
  101. 101.
    McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123:7626–7629CrossRefGoogle Scholar
  102. 102.
    Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199CrossRefGoogle Scholar
  103. 103.
    Park H, Lee S, Chen L et al (2009) SERS imaging of Her2-overexpressed MCF-7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 11:7444–7449CrossRefGoogle Scholar
  104. 104.
    Wang LM, Li JY, Pan J et al (2013) Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 135:17359–17368CrossRefGoogle Scholar
  105. 105.
    Wang L, Jiang X, Ji Y et al (2013) Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale 5:8384–8391CrossRefGoogle Scholar
  106. 106.
    Kim CK, Ghosh P, Pagliuca C, Zhu ZJ, Menichetti S, Rotello VM (2009) Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc 131:1360–1361CrossRefGoogle Scholar
  107. 107.
    Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8:369–373CrossRefGoogle Scholar
  108. 108.
    Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288CrossRefGoogle Scholar
  109. 109.
    Zhang ZJ, Wang J, Nie X et al (2014) Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc 136:7317–7326CrossRefGoogle Scholar
  110. 110.
    Amoozgar Z, Yeo Y (2012) Recent advances in stealth coating of nanoparticle drug delivery systems. WIRES Nanomed Nanobiotechnol 4:219–233CrossRefGoogle Scholar
  111. 111.
    Wang J, Byrne JD, Napier ME, DeSimone JM (2011) More effective nanomedicines through particle design. Small 7:1919–1931CrossRefGoogle Scholar
  112. 112.
    Alivisatos AP, Johnsson KP, Peng XG et al (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611CrossRefGoogle Scholar
  113. 113.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefGoogle Scholar
  114. 114.
    Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V (2003) Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 75:4155–4160CrossRefGoogle Scholar
  115. 115.
    Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096CrossRefGoogle Scholar
  116. 116.
    Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030CrossRefGoogle Scholar
  117. 117.
    Austin LA, Kang B, Yen CW, El-Sayed MA (2011) Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjug Chem 22:2324–2331CrossRefGoogle Scholar
  118. 118.
    Xiao YL, Hong H, Matson VZ et al (2012) Gold nanorods conjugated with doxorubicin and crgd for combined anticancer drug delivery and pet imaging. Theranostics 2:757–768CrossRefGoogle Scholar
  119. 119.
    Black KC, Kirkpatrick ND, Troutman TS et al (2008) Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol Imaging 7:50–57Google Scholar
  120. 120.
    Yamashita S, Fukushima H, Akiyama Y et al (2011) Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Bioorg Med Chem 19:2130–2135CrossRefGoogle Scholar
  121. 121.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270CrossRefGoogle Scholar
  122. 122.
    Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong SQ (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30:6065–6075CrossRefGoogle Scholar
  123. 123.
    Qian XM, Peng XH, Ansari DO et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90CrossRefGoogle Scholar
  124. 124.
    Fischler M, Sologubenko A, Mayer J et al (2008) Chain-like assembly of gold nanoparticles on artificial DNA templates via ‘click chemistry’. Chem Commun 2:169–171CrossRefGoogle Scholar
  125. 125.
    Zhu K, Zhang Y, He S et al (2012) Quantification of proteins by functionalized gold nanoparticles using click chemistry. Anal Chem 84:4267–4270CrossRefGoogle Scholar
  126. 126.
    Loo C, Lin A, Hirsch L et al (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40CrossRefGoogle Scholar
  127. 127.
    Loo C, Lowery A, Halas NJ, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711CrossRefGoogle Scholar
  128. 128.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934CrossRefGoogle Scholar
  129. 129.
    Lu W, Melancon MP, Xiong CY et al (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71:6116–6121CrossRefGoogle Scholar
  130. 130.
    Bardhan R, Chen WX, Perez-Torres C et al (2009) Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv Funct Mater 19:3901–3909CrossRefGoogle Scholar
  131. 131.
    Chen WX, Bardhan R, Bartels M et al (2010) A molecularly targeted theranostic probe for ovarian cancer. Mol Cancer Ther 9:1028–1038CrossRefGoogle Scholar
  132. 132.
    Bardhan R, Chen WX, Bartels M et al (2010) Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett 10:4920–4928CrossRefGoogle Scholar
  133. 133.
    Liu HY, Chen D, Li LL et al (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 50:891–895CrossRefGoogle Scholar
  134. 134.
    Liu HY, Liu TL, Wu XL et al (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24:755–761CrossRefGoogle Scholar
  135. 135.
    Lee SM, Park H, Yoo KH (2010) Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv Mater 22:4049–4053CrossRefGoogle Scholar
  136. 136.
    Xie HA, Diagaradjane P, Deorukhkar AA et al (2011) Integrin alpha(v) beta(3)-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int J Nanomedicine 6:259–269CrossRefGoogle Scholar
  137. 137.
    Melancon MP, Elliott A, Ji XJ et al (2011) Theranostics with multifunctional magnetic gold nanoshells photothermal therapy and T2 magnetic resonance imaging. Invest Radiol 46:132–140CrossRefGoogle Scholar
  138. 138.
    Ke HT, Wang JR, Dai ZF et al (2011) Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew Chem Int Ed 50:3017–3021CrossRefGoogle Scholar
  139. 139.
    Ma Y, Liang XL, Tong S, Bao G, Ren QS, Dai ZF (2013) Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv Funct Mater 23:815–822CrossRefGoogle Scholar
  140. 140.
    Choi J, Yang J, Jang E et al (2011) Gold nanostructures as photothermal therapy agent for cancer. Anti Cancer Agents Med 11:953–964CrossRefGoogle Scholar
  141. 141.
    Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2:125–132CrossRefGoogle Scholar
  142. 142.
    Yi DK, Sun IC, Ryu JH et al (2010) Matrix metalloproteinase sensitive gold nanorod for simultaneous bioimaging and photothermal therapy of cancer. Bioconjug Chem 21:2173–2177CrossRefGoogle Scholar
  143. 143.
    Choi J, Yang J, Bang D et al (2012) Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging. Small 8:746–753CrossRefGoogle Scholar
  144. 144.
    Kuo WS, Chang CN, Chang YT et al (2010) Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew Chem Int Ed 49:2711–2715CrossRefGoogle Scholar
  145. 145.
    Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094CrossRefGoogle Scholar
  146. 146.
    Zhang Y, Qian J, Wang D, Wang YL, He SL (2013) Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, sers detection, and photodynamic therapy. Angew Chem Int Ed 52:1148–1151CrossRefGoogle Scholar
  147. 147.
    Zhang ZJ, Wang J, Chen CY (2013) Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater 25:3869–3880MathSciNetCrossRefGoogle Scholar
  148. 148.
    Zhang ZJ, Wang J, Chen CY (2013) Gold nanorods based platforms for light-mediated theranostics. Theranostics 3:223–238CrossRefGoogle Scholar
  149. 149.
    Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B (2010) Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 26:5428–5434CrossRefGoogle Scholar
  150. 150.
    Melancon MP, Lu W, Yang Z et al (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7:1730–1739CrossRefGoogle Scholar
  151. 151.
    Lu W, Xiong CY, Zhang GD et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886CrossRefGoogle Scholar
  152. 152.
    Lu W, Zhang GD, Zhang R et al (2010) Tumor site-specific silencing of NF-kappa b p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res 70:3177–3188CrossRefGoogle Scholar
  153. 153.
    You J, Shao RP, Wei X, Gupta S, Li C (2010) Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small 6:1022–1031CrossRefGoogle Scholar
  154. 154.
    You J, Zhang GD, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4:1033–1041CrossRefGoogle Scholar
  155. 155.
    You J, Zhang R, Xiong CY et al (2012) Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target Ephb4 receptors in tumors. Cancer Res 72:4777–4786CrossRefGoogle Scholar
  156. 156.
    You J, Zhang R, Zhang GD et al (2012) Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J Control Release 158:319–328CrossRefGoogle Scholar
  157. 157.
    Melancon MP, Elliott AM, Shetty A, Huang Q, Stafford RJ, Li C (2011) Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. J Control Release 156:265–272CrossRefGoogle Scholar
  158. 158.
    Sun YG, Mayers BT, Xia YN (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2:481–485CrossRefGoogle Scholar
  159. 159.
    Chen JY, Yang MX, Zhang QA et al (2010) Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications. Adv Funct Mater 20:3684–3694CrossRefGoogle Scholar
  160. 160.
    Chen JY, Wang DL, Xi JF et al (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7:1318–1322CrossRefGoogle Scholar
  161. 161.
    Au L, Zheng DS, Zhou F, Li ZY, Li XD, Xia YN (2008) A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2:1645–1652CrossRefGoogle Scholar
  162. 162.
    Chen JY, Glaus C, Laforest R et al (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6:811–817CrossRefGoogle Scholar
  163. 163.
    Yavuz MS, Cheng YY, Chen JY et al (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8:935–939CrossRefGoogle Scholar
  164. 164.
    Moon GD, Choi SW, Cai X et al (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133:4762–4765CrossRefGoogle Scholar
  165. 165.
    Shi P, Qu KG, Wang JS, Li M, Ren JS, Qu XG (2012) Ph-responsive nir enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem Commun 48:7640–7642CrossRefGoogle Scholar
  166. 166.
    Yuan H, Fales AM, Vo-Dinh T (2012) Tat peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient nir photothermal therapy using ultralow irradiance. J Am Chem Soc 134:11358–11361CrossRefGoogle Scholar
  167. 167.
    Yuan HK, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T (2012) In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine Nanotechnol 8:1355–1363CrossRefGoogle Scholar
  168. 168.
    Wang SJ, Huang P, Nie LM et al (2013) Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 25:3055–3061CrossRefGoogle Scholar
  169. 169.
    Lapotko DO (2006) Laser-induced bubbles in living cells. Lasers Surg Med 38:240–248CrossRefGoogle Scholar
  170. 170.
    Wagner DS, Delk NA, Lukianova-Hleb EY, Hafner JH, Farach-Carson MC, Lapotko DO (2010) The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 31:7567–7574CrossRefGoogle Scholar
  171. 171.
    Lukianova-Hleb EY, Lapotko DO (2014) Nano-theranostics with plasmonic nanobubbles. IEEE J Sel Top Quantum 20:163–174CrossRefGoogle Scholar
  172. 172.
    Lukianova-Hleb EY, Oginsky AO, Samaniego AP et al (2011) Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics 1:3–17CrossRefGoogle Scholar
  173. 173.
    Lukianova-Hleb EY, Ren XY, Zasadzinski JA, Wu XW, Lapotko DO (2012) Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells. Adv Mater 24:3831–3837CrossRefGoogle Scholar
  174. 174.
    Lukianova-Hleb EY, Samaniego AP, Wen JG, Metelitsa LS, Chang CC, Lapotko DO (2011) Selective gene transfection of individual cells in vitro with plasmonic nanobubbles. J Control Release 152:286–293CrossRefGoogle Scholar
  175. 175.
    Hu J, Zhu XL, Li H et al (2014) Theranostic au cubic nano-aggregates as potential photoacoustic contrast and photothermal therapeutic agents. Theranostics 4:534–545CrossRefGoogle Scholar
  176. 176.
    Ma LL, Feldman MD, Tam JM et al (2009) Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 3:2686–2696CrossRefGoogle Scholar
  177. 177.
    Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665CrossRefGoogle Scholar
  178. 178.
    Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined ct imaging and therapy of prostate cancer. ACS Nano 4:3689–3696CrossRefGoogle Scholar
  179. 179.
    Zhou HS, Honma I, Komiyama H, Haus JW (1994) Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys Rev B 50:12052–12056CrossRefGoogle Scholar
  180. 180.
    Averitt RD, Sarkar D, Halas NJ (1997) Plasmon resonance shifts of au-coated au2s nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78:4217–4220CrossRefGoogle Scholar
  181. 181.
    Decuzzi P, Lee S, Bhushan B, Ferrari M (2005) A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 33:179–190CrossRefGoogle Scholar
  182. 182.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668CrossRefGoogle Scholar
  183. 183.
    Day ES, Bickford LR, Slater JH, Riggall NS, Drezek RA, West JL (2010) Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomedicine 5:445–454CrossRefGoogle Scholar
  184. 184.
    Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL (2010) Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6:745–752CrossRefGoogle Scholar
  185. 185.
    Gao L, Liu R, Gao FP, Wang YL, Jiang XL, Gao XY (2014) Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 8:7260–7271CrossRefGoogle Scholar
  186. 186.
    Yy L, Wen T, Zhao RF et al (2014) Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8:11529–11542CrossRefGoogle Scholar
  187. 187.
    Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ros-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591CrossRefGoogle Scholar
  188. 188.
    Xu YY, Wang J, Li XF et al (2014) Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials 35:4667–4677CrossRefGoogle Scholar
  189. 189.
    Zhou T, Yu M, Zhang B et al (2014) Inhibition of cancer cell migration by gold nanorods: molecular mechanisms and implications for cancer therapy. Adv Funct Mater 24:6922–6932CrossRefGoogle Scholar
  190. 190.
    Weintraub K (2013) Biomedicine: the new gold standard. Nature 495:S14–S16CrossRefGoogle Scholar
  191. 191.
    Huschka R, Zuloaga J, Knight MW, Brown LV, Nordlander P, Halas NJ (2011) Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J Am Chem Soc 133:12247–12255CrossRefGoogle Scholar
  192. 192.
    Xiao ZY, Ji CW, Shi JJ et al (2012) DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed 51:11853–11857CrossRefGoogle Scholar
  193. 193.
    Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671CrossRefGoogle Scholar
  194. 194.
    Zhang JJ, Nie X, Ji YL et al (2013) Quantitative biokinetics and systemic translocation of various gold nanostructures are highly dependent on their size and shape. J Nanosci Nanotechnol 13:1–15CrossRefGoogle Scholar
  195. 195.
    Wang LM, Li YF, Zhou LJ et al (2010) Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal Bioanal Chem 396:1105–1114CrossRefGoogle Scholar
  196. 196.
    Wang J, Xie YD, Wang LM et al (2015) In vivo pharmacokinetic features and biodistribution of star and rod shaped gold nanoparticles by multispectral optoacoustic tomography. RSC Adv 5:7529–7538CrossRefGoogle Scholar
  197. 197.
    Zhang LM, Wang LM, Hu YL et al (2013) Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. Biomaterials 34:7117–7126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics, Chinese Academy of SciencesBeijingChina
  2. 2.CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology of ChinaBeijingChina

Personalised recommendations