Skip to main content

Tomato Fruit Set and Its Modification Using Molecular Breeding Techniques

  • Chapter
  • First Online:
Functional Genomics and Biotechnology in Solanaceae and Cucurbitaceae Crops

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 70))

Abstract

Fruit set is a developmental process involving the transition of an ovary to a fruit. The process is generally stimulated by successful pollination and fertilization and is intricately controlled by plant hormones such as auxin and gibberellin. In tomato crop production, efficient fruit set is crucial for yield, and so parthenocarpy, or fruit set without pollination and fertilization, is a valuable commercial trait. In this study, we review fundamental and practical studies of fruit set and parthenocarpy, focusing on genes related to plant hormones as well as other factors, such as MADS-box transcription factors and anther development. We also propose strategies to genetically improve fruit set efficiency in tomato using molecular breeding techniques. Recently, genes and loci of potential use for improving fruit set have been discovered; however, more diverse genetic resources, as well as improved technical procedures (e.g., strict silencing of target genes in ovarian tissues), may still be required to develop diverse varieties that stably produce high-quality fruits under various environmental conditions. Further understanding of fruit set mechanisms and identification of the genes responsible for parthenocarpy in natural varieties will provide such resources and aid in designing future approaches to improve fruit set efficiency without introducing undesirable traits in reproductive and vegetative growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariizumi T, Shinozaki Y, Ezura H (2013) Genes that influence yield in tomato. Breed Sci 63:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159

    Article  CAS  Google Scholar 

  • Bassel GW, Mullen RT, Bewley JD (2008) procera is a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. J Exp Bot 59:585–593

    Article  CAS  PubMed  Google Scholar 

  • Beraldi D, Picarella ME, Soressi GP, Mazzucato A (2004) Fine mapping of the parthenocarpic fruit (pat) mutation in tomato. Theor Appl Genet 108:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bohner J, Hedden P, Bora-Haber E, Bangerth F (1988) Identification and quantitation of gibberellins in fruits of Lycopersicon esculentum, and their relationship to fruit size in L. esculentum and L. pimpinellfolium. Physiol Plant 73:348–353

    Article  CAS  Google Scholar 

  • Bünger-Kibler S, Bangerth F (1982) Relationship between cell number, cell size and fruit size of seeded fruits of tomato (Lycopersicon esculentum Mill.), and those induced parthenocarpically by the application of plant growth regulators. Plant Growth Regul 154:143–154

    Google Scholar 

  • Carbonell-Bejerano P, Urbez C, Granell A, Carbonell J, Perez-Amador MA (2011) Ethylene is involved in pistil fate by modulating the onset of ovule senescence and the GA-mediated fruit set in Arabidopsis. BMC Plant Biol 11:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735

    Article  CAS  PubMed  Google Scholar 

  • Carrera E, Ruiz-Rivero O, Peres LEP, Atares A, García-Martínez JL (2012) Characterization of the procera tomato mutant shows novel functions of SlDELLA protein in the control of flower morphology, cell division and expansion and auxin-signaling pathway during fruit-set and development. Plant Physiol 160:1581–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles WB, Harris RE (1972) Tomato fruit-set at high and low temperatures. Can J Plant Sci 506: 497–506

    Article  Google Scholar 

  • de Jong M, Mariani C, Vriezen WH (2009a) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532

    Article  PubMed  Google Scholar 

  • de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009b) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:160–170

    Article  PubMed  Google Scholar 

  • de Jong M, Wolters-Arts M, García-Martínez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J Exp Bot 62:617–626

    Article  PubMed  Google Scholar 

  • de Martino G, Pan I, Emmanuel E, Levy A, Irish VF (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18:1833–1845

    Article  PubMed  PubMed Central  Google Scholar 

  • Dharmasiri S, Estelle M (2002) The role of regulated protein degradation in auxin response. Plant Mol Biol 49:401–409

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    Article  CAS  PubMed  Google Scholar 

  • Dill A, Jung HS, Sun T (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA 98:14162–14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y, Yu J (2013) Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS One 8, e70080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40: 47–59

    Article  PubMed  Google Scholar 

  • Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A (1999) Genetic engineering of parthenocarpic fruit development in tomato. Mol Breed 5:463–470

    Article  Google Scholar 

  • Fos M, Nuez F, García-Martínez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fos M, Proaño K, Nuez F, García-Martínez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550

    Article  CAS  PubMed  Google Scholar 

  • Fos M, Proan K, Alabadı D, Nuez F, Carbonell J, García-Martínez JL (2003) Polyamine metabolism is altered in unpollinated parthenocarpic pat-2 tomato ovaries. Plant Physiol 131: 359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gady AL, Hermans FW, Van de Wal MH, van Loo EN, Visser RG, Bachem CW (2009) Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5:13

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813

    Article  PubMed  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5: 1439–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovinazzo G, D’Amico L, Paradiso A, Bollini R, Sparvoli F, DeGara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3:57–69

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Vivian-smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:1873–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorguet B, Eggink PM, Ocaña J, Tiwari A, Schipper D, Finkers R, Visser RGF, van Heusden AW (2008) Mapping and characterization of novel parthenocarpy QTLs in tomato. Theor Appl Genet 116:755–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray WM, Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 53:1678–1691

    Article  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF TIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • Gustafson FG (1936) Inducement of fruit development by growth-promoting chemicals. Proc Natl Acad Sci USA 22:628–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson FG (1937) Parthenocarpy induced by pollen extracts. Am J Bot 24:102–107

    Article  CAS  Google Scholar 

  • Gustafson FG (1939) The cause of natural parthenocarpy. Am J Bot 26:135–138

    Article  Google Scholar 

  • Hayashi K (2012) The interaction and integration of auxin signaling components. Plant Cell Physiol 53:965–975

    Article  CAS  PubMed  Google Scholar 

  • Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 23:2245–2258

    Article  CAS  PubMed  Google Scholar 

  • Ho LC, Hewitt JD (1986) Fruit development. In: Atherton JG, Rudich J (eds) The tomato crop. Chapman and Hall, New York, pp 201–239

    Chapter  Google Scholar 

  • Ingrosso I, Bonsegna S, De Domenico S, Laddomada B, Blando F, Santino A, Giovinazzo G (2011) Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development. Plant Physiol Biochem 49:1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Iwahori S, Takahashi K (1963) High temperature injuries in tomato. II. Effect of duration of high temperature on fruit setting and yield. J Jpn Soc Hortic Sci 33:67–74

    Article  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Tyagi AK, Sharma AK (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics 285:245–260

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Arciga-Reyes L, Zhong S, Alexander L, Hackett R, Wilson I, Grierson D (2008) SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. J Exp Bot 59:4271–4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llop-Tous I, Barry C, Grierson D (2000) Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol 123:971–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maraschin FS, Memelink J, Offringa R (2009) Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59:100–109

    Article  CAS  Google Scholar 

  • Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52:865–876

    Article  PubMed  Google Scholar 

  • Martinelli F, Uratsu SL, Reagan RL, Chen Y, Tricoli D, Fiehn O, Rocke DM, Gasser CS, Dandekar AM (2009) Gene regulation in parthenocarpic tomato fruit. J Exp Bot 60:3873–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez C, Manzano S, Megías Z, Garrido D, Picó B, Jamilena M (2013) Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biol 13:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuo S, Kikuchi K, Fukuda M, Honda I, Imanishi S (2012) Roles and regulation of cytokinins in tomato fruit development. J Exp Bot 63:5569–5579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125:107–114

    CAS  PubMed  Google Scholar 

  • McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcginnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina M, Roque E, Pineda B, Cañas L, Rodriguez-Concepción M, Beltrán JP, Gómez-Mena C (2013) Early anther ablation triggers parthenocarpic fruit development in tomato. Plant Biotechnol J 11:770–779

    Article  CAS  PubMed  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  CAS  PubMed  Google Scholar 

  • Molesini B, Pandolfini T, Rotino GL, Dani V, Spena A (2009) Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol 149:534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K et al (2012) Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. J Exp Bot 63:4901–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe Y, Asamizu E, Saito T, Matsukura C, Ariizumi T, Brès C, Rothan C, Mizoguchi T, Ezura H (2011) Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from Micro-Tom mutant libraries. Plant Cell Physiol 52:1994–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing in higher plants. In: Yamamoto T (ed) Targeted genome editing using site-specific nucleases. Springer, Tokyo, pp 197–205

    Google Scholar 

  • Pandolfini T, Rotino G, Camerini S, Defez R, Spena A (2002) Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnol 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascual L, Blanca JM, Cañizares J, Nuez F (2009) Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC Plant Biol 9:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattison RJ, Catalá C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70:585–598

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Philouze J (1989) Natural parthenocarpy in tomato. IV. A study of the polygenic control of parthenocarpy in line 75/59. Agronomie 9:63–75 (in French with English abstract)

    Article  Google Scholar 

  • Philouze J, Maisonneuve B (1978) Heredity of the natural ability to set parthenocarpic fruits in the Soviet variety Severianin. Tomato Genet Coop Rep 28:12–13

    Google Scholar 

  • Philouze J, Buret M, Duprat F, Nicolas-Grotte M, Nicolas J (1988) Caractéristiques agronomiques et physico-chimiques de lignées de tomate isogéniques, sauf pour le gène pat-2 de parthénocarpie, dans trois types variétaux, en culture de printemps, sous serre plastique trés peu chauffée. Agronomie 8:817–828 (in French with English abstract)

    Article  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS Box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6: 175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinet M, Bataille G, Dobrev PI, Capel C, Gómez P, Capel J, Lutts S, Motyka V, Angosto T, Lozano R (2014) Transcriptional and hormonal regulation of petal and stamen development by STAMENLESS, the tomato (Solanum lycopersicum L.) orthologue to the B-class APETALA3 gene. J Exp Bot 65:2243–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Z, Li Z, Miao Q, Yang Y, Deng W, Hao Y (2011) The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J Exp Bot 62: 2815–2826

    Article  CAS  PubMed  Google Scholar 

  • Roque E, Gómez MD, Ellul P, Wallbraun M, Madueño F, Beltrán JP, Cañas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325

    Article  CAS  PubMed  Google Scholar 

  • Rotino GL, Acciarri N, Sabatini E, Mennella G, Lo Scalzo R, Maestrelli A, Molesini B, Pandolfini T, Scalzo J, Mezzetti B et al (2005) Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol 5:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan Y-L, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamazaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 52:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sastry KKS, Muir RM (1963) Gibberellin: effect on diffusible auxin in fruit development. Science 140:494–495

    Article  CAS  PubMed  Google Scholar 

  • Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2013) SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AoB Plants 5:pls047

    Article  PubMed  Google Scholar 

  • Schijlen EG, de Vos CH, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrani JC, Fos M, Atarés A, García-Martínez JL (2007a) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-tom of tomato. J Plant Growth Regul 26:211–221

    Article  CAS  Google Scholar 

  • Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007b) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki Y, Hao S, Kojima M, Sakakibara H, Ozeki-Iida Y, Zheng Y, Fei Z, Zhong S, Giovannoni JJ, Rose JKC et al. (2015) Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. Plant J 83:237–251

    Google Scholar 

  • Sun T (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471

    Article  CAS  PubMed  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59:453–480

    Article  PubMed  Google Scholar 

  • Vardy E, Lapushner D, Genizi A, Hewitt J (1989) Genetics of parthenocarpy in tomato under a low temperature regime: II. Cultivar ‘Severianin’. Euphytica 41:9–15

    Article  Google Scholar 

  • Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18:233–242

    Article  CAS  PubMed  Google Scholar 

  • Vivian-Smith A, Luo M, Chaudhury A, Koltunow A (2001) Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development 128:2321–2331

    CAS  PubMed  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    CAS  PubMed  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech J-C, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, Latché A, Pech J-C, Fernie AR, Bouzayen M (2009) Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21:1428–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittwer SH, Bukovac MJ, Sell HM, Weller LE (1957) Some effects of gibberellin on flowering and fruit setting. Plant Physiol 32:39–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Peng Z, Liu S, He Y, Cheng L, Kong F, Wang J, Lu G (2012) Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Mol Genet Genomics 287:295–311

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Shinozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shinozaki, Y., Ezura, K. (2016). Tomato Fruit Set and Its Modification Using Molecular Breeding Techniques. In: Ezura, H., Ariizumi, T., Garcia-Mas, J., Rose, J. (eds) Functional Genomics and Biotechnology in Solanaceae and Cucurbitaceae Crops. Biotechnology in Agriculture and Forestry, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48535-4_7

Download citation

Publish with us

Policies and ethics