We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Special Topics

  • Chapter
  • First Online:
Scattering Theory
  • 1957 Accesses

Abstract

This chapter addresses some special topics which are particularly relevant for current research involving cold atoms and molecules. Section 4.1 on deep potentials falling off faster than \(1/r^{ 2}\) at large distances contains a general theory for the description of near-threshold bound and continuum states, which is well suited for application to realistic binary systems such as diatomic molecules or molecular ions. Section 4.2 connects the well established theory of Feshbach resonances with the empirical description which has become widely used in the cold-atoms community, and it formulates a threshold-insensitive parametrization of the Feshbach resonances which is relevant for the analysis of current experiments. The last section contains a short treatise on two-dimensional scattering, which reveals significant differences to the 3D case, in particular in the low-energy, near-threshold regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Noninteger values of \(l\) are not merely of academic interest. They can describe the effects of inverse-square potentials of other origin than the centrifugal term. In two-dimensional scattering described in Sect. 4.3, the radial Schrödinger equation with integer angular momentum quantum number \(m\) resembles that of the 3D case when \(l=\vert m\vert-{1\over 2}\).

  2. 2.

    Due to the \(m\)-independent term \({\pi\over 4}\) appearing in the arguments both of \(u_{m}^{(\mathrm{s})}(kr)\) and of \(u_{m}^{(\mathrm{c})}(kr)\) in (4.217), there is no a priori preference for the assignment of an asymptotic “sine-” or “cosine-like” behaviour. The present nomenclature is chosen to make the connection to the 3D case as transparent as possible.

  3. 3.

    Since \(m=0\) corresponds to \(l=-{1\over 2}\), the phase shift \(\tilde{\delta}\) in Sect. 2.7.2.3 is actually the scattering phase shift \(\delta_{m=0}\) in the present case, see Eq. (2.341).

References

  1. Adhikari, S.K.: Quantum scattering in two dimensions. Am. J. Phys. 54, 362 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  3. Arnecke, F., Friedrich, H., Madroñero, J.: Effective-range expansion for quantum reflection amplitudes. Phys. Rev. A 74, 062702 (2006)

    Article  ADS  Google Scholar 

  4. Arnecke, F., Friedrich, H., Madroñero, J.: Scattering of ultracold atoms by absorbing nanospheres. Phys. Rev. A 75, 042903 (2007)

    Article  ADS  Google Scholar 

  5. Arnecke, F., Friedrich, H., Raab, P.: Near-threshold scattering, quantum reflection, and quantization in two dimensions. Phys. Rev. A 78, 052711 (2008)

    Article  ADS  Google Scholar 

  6. Ball, P.: Lost correspondence. Nature (1999). doi:10.1038/news991202-2, http://www.nature.com/news/1999/991126/full/news991202-2.html

    Google Scholar 

  7. Barton, G.: Rutherford scattering in two dimensions. Am. J. Phys. 51, 420 (1982)

    Article  ADS  Google Scholar 

  8. Boisseau, C., Audouard, E., Vigué, J.: Comment on “Breakdown of Bohr’s correspondence principle”. Phys. Rev. Lett. 86, 2694 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. Barton, G.: Frequency shifts near an interface: inadequacy of two-level atomic models. J. Phys. B 7, 2134 (1974)

    Article  ADS  Google Scholar 

  10. Böheim, J., Brenig, W., Stutzki, J.: On the low energy limit of reflection and sticking coefficients in atom-surface scattering II: Long range forces. Z. Phys. B 48, 43 (1982). Erratum: Z. Phys. B 49, 362 (1983)

    Article  ADS  Google Scholar 

  11. Berry, M.V., Mount, K.E.: Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35, 315 (1972)

    Article  ADS  Google Scholar 

  12. Brenig, W.: Low-energy limit of reflection and sticking coefficients in atom surface scattering: 1. Short-range forces. Z. Phys. B 36, 227 (1980)

    Article  ADS  Google Scholar 

  13. Bodo, E., Zhang, P., Dalgarno, A.: Ultra-cold ion–atom collisions: near resonant charge exchange. New J. Phys. 10, 033024 (2008)

    Article  ADS  Google Scholar 

  14. Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Feshbach resonances in ultracold gase. Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  15. Côté, R., Heller, E.J., Dalgarno, A.: Quantum suppression of cold atomic collisions. Phys. Rev. A 53, 234 (1996)

    Article  ADS  Google Scholar 

  16. Carbonell, J., Lasauskas, R., Delande, D., Hilico, L., Kiliç, S.: A new vibrational level of the \(\mathrm{H}_{2}^{ +}\) molecular ion. Europhys. Lett. 64, 316 (2003)

    Article  ADS  Google Scholar 

  17. Crubellier, A., Luc-Koenig, E.: Threshold effects in the photoassociation of cold atoms: R-6 model in the Milne formalism. J. Phys. B 39, 1417 (2006)

    Article  ADS  Google Scholar 

  18. Clougherty, D.P., Kohn, W.: Quantum theory of sticking. Phys. Rev. B 46, 4921 (1992)

    Article  ADS  Google Scholar 

  19. Casimir, H.B.G., Polder, D.: The influence of retardation on the London–van der Waals forces. Phys. Rev. 73, 360 (1948)

    Article  ADS  MATH  Google Scholar 

  20. Côté, R., Segev, B.: Quantum reflection engineering: the bichromatic evanescent-wave mirror. Phys. Rev. A 67, 041604(R) (2003)

    Article  ADS  Google Scholar 

  21. Druzhinina, V., DeKieviet, M.: Experimental observation of quantum reflection far from threshold. Phys. Rev. Lett. 91, 193202 (2003)

    Article  ADS  Google Scholar 

  22. Del Giudice, E., Galzenati, E.: On singular potential scattering I. Nuovo Cimento 38, 435 (1965)

    Article  MathSciNet  Google Scholar 

  23. Dalfovo, F., Giorgini, S., Guilleumas, M., Pitaevskii, L., Stringari, S.: Collective and single-particle excitations of a trapped Bose gas. Phys. Rev. A 56, 3840 (1997)

    Article  ADS  Google Scholar 

  24. Dickinson, A.S.: Quantum reflection model for ionization rate coefficients in cold metastable helium collisions. J. Phys. B 40, F237 (2007)

    Article  ADS  Google Scholar 

  25. Davis, K.B., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  26. Dashevskaya, E.I., Maergoiz, A.I., Troe, J., Litvin, I., Nikitin, E.E.: Low-temperature behavior of capture rate constants for inverse power potentials. J. Chem. Phys. 118, 7313 (2003)

    Article  ADS  Google Scholar 

  27. Damburg, R.J., Propin, R.K.: On asymptotic expansions of electronic terms of the molecular ion \(\mathrm{H}_{2}^{+}\). J. Phys. B 1, 681 (1968)

    Article  ADS  Google Scholar 

  28. Docenko, O., Tamanis, M., Zaharova, J., Ferber, R., Pashov, A., Knöckel, H., Tiemann, E.: The coupling of the \(\mathrm{X}^{1}\varSigma^{+}\) and \(\mathrm{a}^{3}\varSigma^{+}\) states of the atom pair Na + Cs and modelling cold collisions. J. Phys. B 39, S929 (2006)

    Article  ADS  Google Scholar 

  29. Eltschka, C., Friedrich, H., Moritz, M.J.: Comment on “Breakdown of Bohr’s correspondence principle”. Phys. Rev. Lett. 86, 2693 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. Fink, M., Eiglsperger, J., Madroñero, J., Friedrich, H.: Influence of retardation in the scattering of ultracold atoms by conducting nanowires. Phys. Rev. A 85, 040702(R) (2012); Fink, M.: Scattering and Absorption of Ultracold Atoms by Nanotubes. Doctoral thesis, Technical University Munich (2013): http://mediatum.ub.tum.de/doc/1141600/1141600.pdf

    Article  ADS  Google Scholar 

  31. Flambaum, V.V., Gribakin, G., Harabati, C.: Analytical calculation of cold-atom scattering. Phys. Rev. A 59, 1998 (1999)

    Article  ADS  Google Scholar 

  32. Friedrich, H., Jurisch, A.: Quantum reflection times for attractive potential tails. Phys. Rev. Lett. 92, 103202 (2004)

    Article  ADS  Google Scholar 

  33. Friedrich, H., Jacoby, G., Meister, C.G.: Quantum reflection by Casimir van der Waals potential tails. Phys. Rev. A 65, 032902 (2002)

    Article  ADS  Google Scholar 

  34. Friedrich, H.: Theoretical Atomic Physics, 2nd edn. Springer, Berlin (1998). 3rd. Ed. 2006

    Book  MATH  Google Scholar 

  35. Friedrich, H., Trost, J.: Working with WKB waves far from the semiclassical limit. Phys. Rep. 397, 359 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  36. Gribakin, G.F., Flambaum, V.V.: Calculation of the scattering length in atomic collisions using the semiclassical approximation. Phys. Rev. A 48, 546 (1993)

    Article  ADS  Google Scholar 

  37. Gao, B.: Quantum-defect theory of atomic collisions and molecular vibration spectra. Phys. Rev. A 58, 4222 (1998)

    Article  ADS  Google Scholar 

  38. Gao, B.: Breakdown of Bohr’s correspondence principle. Phys. Rev. Lett. 83, 4225 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Gao, B.: General form of the quantum-defect theory for \(-1/r^{ \alpha}\) type of potentials with \(\alpha>2\). Phys. Rev. A 78, 012702 (2008)

    Article  ADS  Google Scholar 

  40. Gao, B.: Universal properties in ultracold ion–atom interactions. Phys. Rev. Lett. 104, 231201 (2010)

    Google Scholar 

  41. Greene, C., Fano, U., Strinati, G.: General form of quantum defect theory. Phys. Rev. A 19, 1485 (1979)

    Article  ADS  Google Scholar 

  42. Giusti, A.: A multichannel quantum defect approach to dissociative recombination. J. Phys. B 13, 3867 (1980)

    Article  ADS  Google Scholar 

  43. Greene, C.H., Rau, A.R.P.: General form of the quantum-defect theory. II. Phys. Rev. A 26, 2441 (1982)

    Article  ADS  Google Scholar 

  44. Gao, B., Tiesinga, E., Williams, C.J., Julienne, P.S.: Multichannel quantum-defect theory for slow atomic collisions. Phys. Rev. A 72, 042719 (2005)

    Article  ADS  Google Scholar 

  45. Hilico, L., Billy, N., Grémaud, B., Delande, D.: Ab initio calculation of the \(J=0\) and \(J=1\) states of the \(\mathrm{H}_{2}^{+}\), \(\mathrm{D}_{2}^{+}\) and \(\mathrm{HD}^{+}\) molecular ions. Eur. Phys. J. D 12, 449 (2000)

    Article  ADS  Google Scholar 

  46. Huang, K., Yang, C.N.: Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. A 105, 767 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Johnson, S.: Life of Abraham Cowley. In: Lonsdale, R. (ed.) The Lives of the Most Eminent English Poets. Oxford University Press, Oxford (2006). (First published 1781)

    Google Scholar 

  48. Khuri, N.N., Martin, A., Richard, J.-M., Wu, T.T.: Low-energy potential scattering in two and three dimensions. J. Math. Phys. 50, 072105 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Kaiser, A., Müller, T.-O., Friedrich, H.: Influence of higher-order dispersion coefficients on near-threshold bound and continuum states: application to 88Sr2. J. Chem. Phys. 135, 214302 (2011)

    Article  ADS  Google Scholar 

  50. Kaiser, A., Müller, T.-O., Friedrich, H.: Quantisation rule for highly excited vibrational states of \(\mathrm{H}_{2}^{+}\). Mol. Phys. 111, 878 (2013)

    Article  ADS  Google Scholar 

  51. Lapidus, I.R.: Quantum-mechanical scattering in two dimensions. Am. J. Phys. 50, 45 (1982)

    Article  ADS  Google Scholar 

  52. LeRoy, R.J., Bernstein, R.B.: Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels. J. Chem. Phys. 52, 3869 (1970)

    Article  ADS  Google Scholar 

  53. Lemeshko, M., Friedrich, B.: Rotational and rotationless states of weakly bound molecules. Phys. Rev. A 79, 050501 (2009)

    Article  ADS  Google Scholar 

  54. Lemeshko, M., Friedrich, B.: Rotational structure of weakly bound molecular ions. J. At. Mol. Sci. 1, 39 (2010)

    Google Scholar 

  55. Landau, L.D., Lifschitz, E.M.: Quantenmechanik. Theoretische Physik, vol. 3, p. 81. Akademie-Verlag, Berlin (1965)

    Google Scholar 

  56. Laue, T., Tiesinga, E., Samuelis, C., Knöckel, H., Tiemann, E.: Magnetic-field imaging of weakly bound levels of the ground-state Na2 dimer. Phys. Rev. A 65, 023412 (2002)

    Article  ADS  Google Scholar 

  57. Marinescu, M., Dalgarno, A., Babb, J.F.: Retarded long-range potentials for the alkali-metal atoms and a perfectly conducting wall. Phys. Rev. A 55, 1530 (1997)

    Article  ADS  Google Scholar 

  58. Moritz, M.J., Eltschka, C., Friedrich, H.: Threshold properties of attractive and repulsive inverse-square potentials. Phys. Rev. A 63, 042101 (2001)

    Article  ADS  Google Scholar 

  59. Moritz, M.J., Eltschka, C., Friedrich, H.: Near-threshold quantization and level densities for potential wells with weak inverse-square tail. Phys. Rev. A 64, 022101 (2001)

    Article  ADS  Google Scholar 

  60. Madroñero, J., Friedrich, H.: Influence of realistic atom wall potentials in quantum reflection traps. Phys. Rev. A 75, 022902 (2007)

    Article  ADS  Google Scholar 

  61. Mody, A., Haggerty, M., Doyle, J.M., Heller, E.J.: No-sticking effect and quantum reflection in ultracold collisions. Phys. Rev. B 64, 085418 (2001)

    Article  ADS  Google Scholar 

  62. Müller, T.-O., Friedrich, H.: Near-threshold quantization for potentials with inverse-cube tails. Phys. Rev. 83, 022701 (2011)

    Article  Google Scholar 

  63. Mies, F.: A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering. J. Chem. Phys. 80, 2514 (1984)

    Article  ADS  Google Scholar 

  64. Mies, F., Julienne, P.S.: A multichannel quantum defect analysis of two-state couplings in diatomic molecules. J. Chem. Phys. 80, 2526 (1984)

    Article  ADS  Google Scholar 

  65. Müller, T.-O., Kaiser, A., Friedrich, H.: \(s\)-Wave scattering for deep potentials with attractive tails falling off faster than \(-1/r^{ 2}\). Phys. Rev. 84, 032701 (2011)

    Article  Google Scholar 

  66. Müller, T.-O., Kaiser, A., Friedrich, H.: Addendum to “\(s\)-Wave scattering for deep potentials with attractive tails falling off faster than \(-1/r^{ 2}\)”. Phys. Rev. 84, 054702 (2011)

    Article  Google Scholar 

  67. Müller, T.-O.: Threshold law far attractive inverse-cube interactions. Phys. Rev. Lett. 110, 260401 (2013)

    Article  Google Scholar 

  68. Moerdijk, A.J., Verhaar, B.J., Axelsson, A.: Resonances in ultracold collisions of 6Li, 7Li, and 23Na. Phys. Rev. A 51, 4852 (1995)

    Article  ADS  Google Scholar 

  69. Madison, K.W., Wang, Y., Rey, A.M., Bongs, K. (eds.): Annual Review of Cold Atoms and Molecules, vol. 1. World Scientific, Singapore (2013)

    Google Scholar 

  70. Oberst, H., Kouznetsov, D., Shimizu, K., Fujita, J., Shimizu, F.: Fresnel diffraction mirror for an atomic wave. Phys. Rev. Lett. 94, 013203 (2005)

    Article  ADS  Google Scholar 

  71. Peek, J.M.: Eigenparameters for the \(1s\sigma g\) and \(2p\sigma u\) orbitals of \(\mathrm{H}_{2}^{ +}\). J. Chem. Phys. 43, 3004 (1965)

    Article  ADS  Google Scholar 

  72. Paulsson, R., Karlsson, F., LeRoy, R.J.: Reliability of high-order phase integral eigenvalues for single and double minimum potentials. J. Chem. Phys. 79, 4346 (1983)

    Article  ADS  Google Scholar 

  73. Phys. Rev. Focus: Apply quantum principle with caution, http://prlo.aps.org/story/v4/st26 (1999)

  74. Pasquini, T., Shin, Y., Sanner, C., Saba, M., Schirotzek, A., Pritchard, D.E., Ketterle, W.: Quantum reflection from a solid surface at normal incidence. Phys. Rev. Lett. 93, 223201 (2004)

    Article  ADS  Google Scholar 

  75. Quémener, G., Julienne, P.S.: Ultracold molecules under control. Chem. Rev. 112, 4949 (2012)

    Article  Google Scholar 

  76. Raab, P., Friedrich, H.: Quantization function for deep potentials with attractive tails. Phys. Rev. A 78, 022707 (2008)

    Article  ADS  Google Scholar 

  77. Raab, P., Friedrich, H.: Quantization function for potentials with \(-1/r^{4}\) tails. Phys. Rev. A 80, 052705 (2009)

    Article  ADS  Google Scholar 

  78. Shimizu, F.: Specular reflection of very slow metastable neon atoms from a solid surface. Phys. Rev. Lett. 86, 987 (2001)

    Article  ADS  Google Scholar 

  79. Stein, A., Knöckel, H., Tiemann, E.: Fourier-transform spectroscopy of Sr2 and revised ground-state potential. Phys. Rev. A 78, 042508 (2008)

    Article  ADS  Google Scholar 

  80. Steinke, M., Knöckel, H., Tiemann, E.: (X)1 \({}^{1}\varSigma^{+}\) state of LiNa studied by Fourier-transform spectroscopy. Phys. Rev. A 85, 042720 (2012)

    Article  ADS  Google Scholar 

  81. Schwarz, F., Müller, T.-O., Friedrich, H.: Near-threshold Feshbach resonances in interatomic collisions and spectra. Phys. Rev. A 85, 052703 (2012)

    Article  ADS  Google Scholar 

  82. Schuster, T., Scelle, R., Trautmann, A., Knoop, S., Oberthaler, M.K., Haverhals, M.M., Goosen, M.R., Kokkelmans, S.J.J.M.F., Tiemann, E.: Feshbach spectroscopy and scattering properties of ultracold Li + Na mixtures. Phys. Rev. A 85, 042721 (2012)

    Article  ADS  Google Scholar 

  83. Samuelis, C., Tiesinga, E., Laue, T., Elbs, M., Knöckel, H., Tiemann, E.: Cold atomic collisions studied by molecular spectroscopy. Phys. Rev. A 63, 012710 (2000)

    Article  ADS  Google Scholar 

  84. Stwalley, W.: The dissociation energy of the hydrogen molecule using long-range forces. Chem. Phys. Lett. 6, 241 (1970)

    Article  ADS  Google Scholar 

  85. Trost, J., Eltschka, C., Friedrich, H.: Quantisation in molecular potentials. J. Phys. B 31, 361 (1998)

    Article  ADS  Google Scholar 

  86. Ticknor, C.: Two-dimensional dipolar scattering. Phys. Rev. A 80, 052702 (2009)

    Article  ADS  Google Scholar 

  87. Verhaar, B.J., van den Eijnde, P.H.W., Voermans, M.A., Schaffrath, M.M.J.: Scattering length and effective range in two dimensions: application to adsorbed hydrogen atoms. J. Phys. A 17, 595 (1984)

    Article  ADS  Google Scholar 

  88. Voronin, A.Y., Froelich, P.: Quantum reflection of ultracold antihydrogen from a solid surface. J. Phys. B 38, L301 (2005)

    Article  ADS  Google Scholar 

  89. Voronin, A.Y., Froelich, P., Zygelman, B.: Interaction of ultracold antihydrogen with a conducting wall. Phys. Rev. A 72, 062903 (2005)

    Article  ADS  Google Scholar 

  90. Yu, I.A., Doyle, J.M., Sandberg, J.C., Cesar, C.L., Kleppner, D., Greytak, T.J.: Evidence for universal quantum reflection of hydrogen from liquid 4He. Phys. Rev. Lett. 71, 1589 (1993)

    Article  ADS  Google Scholar 

  91. Zhao, B.S., Meijer, G., Schöllkopf, W.: Quantum reflection of He2 several nanometers above a grating surface. Science 331, 892 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friedrich, H. (2016). Special Topics. In: Scattering Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48526-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48526-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48524-8

  • Online ISBN: 978-3-662-48526-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics