Skip to main content

Integrative Design Computation for Local Resource Effectiveness in Architecture

  • Chapter
  • First Online:
Urbanization and Locality

Abstract

Architecture has a profound impact on the use of resources. For example, in 2014, the building sector alone was responsible for half of Europe’s energy and material consumption (COM 2014). Increasing efficiency will involve all steps from material extraction, to manufacturing, assembly, construction, and usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcorn A (1996) Embodied energy coefficients of building materials, centre for building performance research, Wellington

    Google Scholar 

  • Brell-Çokcan S, Braumann J (2010) A new parametric design tool for robot milling. In: Proceeding of the 30th conference of the association for computer aided design in architecture, New York City, pp 357–363

    Google Scholar 

  • Bundesamt für Naturschutz (2004) Daten zur Natur 2004, Landwirtschaftsverlag GmbH, Bonn

    Google Scholar 

  • BS EN 338 (2003) Structural timber. Strength classes, BSI. ISBN 978 0 580 58144 1

    Google Scholar 

  • Cheret P, Schwaner K, Seidel A (2013) Urbaner Holzbau. Handbuch und Planungshilfe, DOM publishers, Berlin

    Google Scholar 

  • Correa D, Krieg O, Menges A, Reichert S, Rinderspacher, K (2013) HygroSkin: a prototype project for the development of a constructional and climate responsive architectural system based on the elastic and hygroscopic properties of wood. In: proceedings of the 33nd conference of the association for computer aided design in architecture, Waterloo, pp 33–42

    Google Scholar 

  • Deutscher Holzwirtschaftsrat DHWR (2014). German Wood Economics Affair Council

    Google Scholar 

  • Dong C, Davies IJ (2013) Flexural properties of glass in carbon fiber reinforced epoxy hybrid composites. Proc Inst Mech Eng Part L: J Mater Des Appl 227(4):308–317

    Google Scholar 

  • Dunlop JW, Fratzl P (2010) Biological composites. Annu Rev Mater Res 40(1):1–24

    Google Scholar 

  • COM, European Commission (2014) Communication from the commission to the European Parliament, the council, the European economic and social committee and the committee of the regions on resource efficiency opportunities in the building sector

    Google Scholar 

  • Federal Statistical Office (2013) Forest and Wood. [Online] Available from: https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/LandForstwirtschaftFischerei/WaldundHolz/Tabellen/GesamteinschlagHolzartengruppen.html;jsessionid=821E2E8329C86CB46249335C5A52E2A6.cae1. Accessed 01 Oct 2014

  • Gordon JE (2003) Structures: or why things don’t fall down. Da Capo Press, Boston

    Google Scholar 

  • HOAI Official Scale of Fees for Services by Architects and Engineers (2013) § 34 Service profile of buildings and interiors(2) and (3). In: Fachmedien (ed) HOAI 2013-Textausgabe/HOAI 2013-text edition, 5th edn, Springer, Wiesbaden. ISBN 978-3-658-03269-2

    Google Scholar 

  • Kimpian J, Mason J, Coenders J, Jestico D, Watts S (2009) Sustainably tall: investment, energy, life cycle. In: ACADIA 09: reForm()—building a better tomorrow, Chicago, pp 130–143

    Google Scholar 

  • Kieran S, Timberlake J (2004) Refabricating architecture. How manufacturing methodologies are poised to transform building construction. McGraw-Hill, New York

    Google Scholar 

  • Kolb J (2008) Systems in timber engineering: loadbearing structures and component layers. Birkhäuser, Basel

    Google Scholar 

  • Kölling C (2007a) Klimahüllen für 27 Waldbaumarten. In: AFZ Der Wald, vol 23. Deutscher Landwirtschaftsverlag, pp 1242–1245

    Google Scholar 

  • Kölling C (2007b) Die Anfälligkeit der Wälder Deutschlands gegenüber dem Klimawandel, Gefahrstoffe-Reinhaltung der Luft, vol 6/2007, p 264

    Google Scholar 

  • Lozán J (2008) Warnsignal Klima: Gesundheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, Wissenschaftliche Auswertungen, Universität Hamburg, Hamburg

    Google Scholar 

  • Mantau U (2012) Holzrohstoffbilanz Deutschland, Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung 1987 bis 2015, Hamburg

    Google Scholar 

  • Menges A (2013) Morphospaces of robotic fabrication. In: Brell-Çokcan S, Braumann J (eds) Robotic fabrication in architecture, art and design: proceedings of the robots in architecture conference 2012. Springer, Vienna 28–47

    Google Scholar 

  • Menges A, Schwinn T (2015) Fabrication agency. Architectural Des 85(5), forthcoming publication

    Google Scholar 

  • Nachtigall W, Pohl G (2004) Bau-Bionik: Natur, Analogien, Technik. Springer, Berlin

    Google Scholar 

  • Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspiration & Biomimetics 7(1)

    Google Scholar 

  • Krieg O, Menges A (2013) Prototyping robotic production: development of elastically bent wood plate morphologies with curved finger joint seams. In: Rethinking prototyping, proceedings of the design modelling symposium Berlin 2013, Verlag der Universität der Künste Berlin, pp 479–490

    Google Scholar 

  • Krieg O, Dierichs K, Reichert S, Schwinn T, Menges, A (2011) Performative architectural morphology: finger-joined plate structures integrating robotic manufacturing, biological principles and location-specific requirements. In: Gengnagel, C, Kilian, A, Palz N, Scheurer F (eds) Computational design modeling, proceedings of the design modeling symposium Berlin, Springer, Berlin, pp 259–266

    Google Scholar 

  • Krieg O, Schwinn T, Menges A, Li J, Knippers J, Schmitt A, Schwieger V (2015) biomimetic lightweight timber plate shells: computational integration of robotic fabrication, architectural geometry and structural design. In: Block P, Knippers Mitra N, Wang W (eds) Advances in architectural geometry 2014, pp 109–125

    Google Scholar 

  • La Magna R, Gabler M, Reichert S, Schwinn T, Waimer F, Menges A, Knippers J (2013) From nature to fabrication: biomimetic design principles for the production of complex spatial structures. Int J Spat Struct 28(1): 27–40

    Google Scholar 

  • Lozán JL et al (2008) Warnsignal Klima: Gesundheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, Wissenschaftliche Auswertungen, Hamburg

    Google Scholar 

  • Pollmeier (2014) BauBuche: IngeniousHardwood, Informationen, Pollmeier Massivholz GmbH, Creuzberg, Germany

    Google Scholar 

  • Schade V, Dümmer R, Seume K, Winderscheid B, Bitter W (2007) ZMP-Bilanz Forst und Holz. ZMP Zentrale Markt- und Preisberichtstelle

    Google Scholar 

  • Schindler C (2010) Die Standards des Nonstandards. GAM—Graz Architecture Mag 06:181–193

    Google Scholar 

  • Schwinn T, Krieg O, Menges A (2014) Behavioral strategies: synthesizing design computation and robotic fabrication of lightweight timber plate structures. In: Design agency, proceedings of the 34th annual conference of the association for computer aided design in architecture, Los Angeles, pp 177–188

    Google Scholar 

  • Sobiella C (2014) Das große Gefälle, in enorm Magazin 05/14, SocialPublish Verlag, Hamburg, pp 41–46

    Google Scholar 

  • Vincent J (2009) Biomimetic patterns in architectural design. Architectural Des 79(6):74–81

    Google Scholar 

  • Wester T (1992) Structural dualism and sea urchins. In: Natural structures: principles, strategies, and models in architecture and nature (Proceedings of the II. International Symposium of the Sonderforschungsbereich 230, 1.-4.10.1991), Part III. Stuttgart, Tübingen: Vorstand des SFB 230, pp 177–182

    Google Scholar 

Download references

Acknowledgements

The work presented in this paper was partially funded by the European Union through the European Fund for Regional Development (ERDF) and the state of Baden-Württemberg through the “ClusterinitiativeForst und Holz” program and is part of a joint research project between the University of Stuttgart and MüllerblausteinHolzbau GmbH. The authors would like to express their gratitude toward their fellow investigators Professors Jan Knippers and Jian-Min Li at the Institute for Building Structures and Structural Design; and Professors Volker Schwieger and Annette Schmitt at the Institute for Geodesic Engineering, University of Stuttgart. The authors would also like to thank their project partners MüllerblausteinHolzbau GmbH, Landesgartenschau Schwäbisch Gmünd 2014 GmbH, ForstBW, and KUKA Roboter GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Menges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Krieg, O.D., Schwinn, T., Menges, A. (2016). Integrative Design Computation for Local Resource Effectiveness in Architecture. In: Wang, F., Prominski, M. (eds) Urbanization and Locality. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48494-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48494-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48492-0

  • Online ISBN: 978-3-662-48494-4

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics