Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 635 Accesses

Abstract

The definition of temperature is the foundation of thermodynamics. In extended irreversible thermodynamics (EIT) which goes beyond the classical one to be compatible with the non-Fourier heat conduction, the nonequilibrium temperature is defined. Based on the thermomass theory, it is shown that the static and stagnant pressures of the thermomass flow correspond to the static and stagnant temperatures, respectively. The stagnant temperature is higher than the static one due to the kinetic energy of thermomass. The static temperature is the real state variable, which is identical to the nonequilibrium temperature. It should be the criterion of thermodynamic equilibrium. The local entropy and internal energy densities should be represented by the static temperature. In this manner, the classical relation between entropy, internal energy, and temperature still holds. The derivation based on the phonon Boltzmann equation shows that the integral of the second-order expansion of the distribution function in the energy balance equation corresponds to the kinetic energy of thermomass, which leads to the difference between the static and stagnant temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Prog Phys 66(11):1937

    Google Scholar 

  2. Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Casas-Vázquez J, Jou D (1994) Nonequilibrium temperature versus local-equilibrium temperature. Phys Rev E 49(2):1040

    Google Scholar 

  4. Cimmelli VA, Sellitto A, Jou D (2009) Nonlocal effects and second sound in a nonequilibrium steady state. Phys Rev B 79(1):014303

    Article  ADS  Google Scholar 

  5. Cimmelli VA, Sellitto A, Jou D (2010) Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys Rev B 81(5):054301

    Article  ADS  Google Scholar 

  6. Cimmelli VA, Sellitto A, Jou D (2010) Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys Rev B 82(18):184302

    Article  ADS  Google Scholar 

  7. Baranyai A (2000) Temperature of nonequilibrium steady-state systems. Phys Rev E 62(5):5989

    Article  ADS  Google Scholar 

  8. Hatano T, Jou D (2003) Measuring nonequilibrium temperature of forced oscillators. Phys Rev E 67(2):026121

    Article  ADS  Google Scholar 

  9. Clancy LJ (1975) Aerodynamics. Wiley, New York

    Google Scholar 

  10. Müller I (1967) On the entropy inequality. Arch Ration Mech Anal 26(2):118–141

    Article  MathSciNet  MATH  Google Scholar 

  11. Sellitto A, Cimmelli VA, Jou D (2013) Entropy flux and anomalous axial heat transport at the nanoscale. Phys Rev B 87(5):054302

    Article  ADS  Google Scholar 

  12. Guyer RA, Krumhansl JA (1966) Solution of the linearized phonon Boltzmann equation. Phys Rev 148(2):766–778

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, Y. (2016). Nonequilibrium Temperature in Non-Fourier Heat Conduction. In: Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48485-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48485-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48483-8

  • Online ISBN: 978-3-662-48485-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics