Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 626 Accesses

Abstract

The classical expression for entropy production is a bilinear product of generalized forces and fluxes. The combination of the Cattaneo-Vernotte model with the classical entropy expression gives a non-quadratic form, which needs to be mended to avoid the paradox of negative entropy production. Based on the thermomass theory, it is shown that the entropy production corresponds to the dissipation of the mechanical energy of thermomass flow. Therefore, the generalized forces in the entropy production should be the friction force rather than the driving force. The friction force is proportional to the heat flux. The general entropy production is thus derived as a quadratic form of heat flux, avoiding the paradox of the negative entropy production. The generalized forces and fluxes in other irreversible transport processes are investigated following the similar framework. The friction forces, driving forces and drift velocities are clarified for these transports and the general entropy production for various transport processes are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jou D, Casas-Vazquez J, Lebon G (1999) Extended irreversible thermodynamics revisited (1988–98). Rep Prog Phys 62(7):1035

    Google Scholar 

  2. Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Cimmelli VA (2009) Different thermodynamic theories and different heat conduction laws. J Non-Equilib Thermodyn 34(4):299–333

    Article  ADS  MATH  Google Scholar 

  5. Criado-Sancho M, Llebot JE (1993) Behavior of entropy in hyperbolic heat conduction. Phys Rev E 47:4104–4107

    Article  ADS  Google Scholar 

  6. Casas-Vázquez J, Jou D (1994) Nonequilibrium temperature versus local-equilibrium temperature. Phys Rev E 49(2):1040

    Google Scholar 

  7. Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Prog Phys 66(11):1937

    Google Scholar 

  8. Cimmelli VA, Sellitto A, Jou D (2009) Nonlocal effects and second sound in a nonequilibrium steady state. Phys Rev B 79(1):014303

    Article  ADS  Google Scholar 

  9. Cimmelli VA, Sellitto A, Jou D (2010) Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys Rev B 81(5):054301

    Article  ADS  Google Scholar 

  10. Cimmelli VA, Sellitto A, Jou D (2010) Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys Rev B 82(18):184302

    Article  ADS  Google Scholar 

  11. Alvarez FX, Jou D (2008) Size and frequency dependence of effective thermal conductivity in nanosystems. J Appl Phys 103(9):094321

    Article  ADS  Google Scholar 

  12. Sellitto A, Alvarez FX, Jou D (2010) Second law of thermodynamics and phonon-boundary conditions in nanowires. J Appl Phys 107(6):064302

    Article  ADS  Google Scholar 

  13. Jou D, Criado-Sancho M, Casas-Vázquez J (2010) Heat fluctuations and phonon hydrodynamics in nanowires. J Appl Phys 107(8):084302

    Article  ADS  Google Scholar 

  14. Jou D, Cimmelli VA, Sellitto A (2012) Nonlocal heat transport with phonons and electrons: application to metallic nanowires. Int J Heat Mass Transf 55(9):2338–2344

    Article  MATH  Google Scholar 

  15. Sellitto A, Alvarez FX, Jou D (2012) Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires. Int J Heat Mass Transf 55(11):3114–3120

    Article  Google Scholar 

  16. Sellitto A, Cimmelli VA, Jou D (2013) Entropy flux and anomalous axial heat transport at the nanoscale. Phys Rev B 87(5):054302

    Article  ADS  Google Scholar 

  17. Mazur P, de Groot SR (1963) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    MATH  Google Scholar 

  18. Vignes A (1966) Diffusion in binary solutions. Variation of diffusion coefficient with composition. Ind Eng Chem Fundam 5(2):189–199

    Article  Google Scholar 

  19. Atkins P, Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, New York

    Google Scholar 

  20. Gallavotti G (1996) Chaotic hypothesis: onsager reciprocity and fluctuation-dissipation theorem. J Stat Phys 84(5–6):899–925

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Havemann RH, Engel PF, Baird JR (2003) Nonlinear correction to Ohm’s law derived from Boltzmann’s equation. Appl Phys Lett 24(8):362–364

    Article  ADS  Google Scholar 

  22. Bird R B, Armstrong R C, Hassager O (1987) Dynamics of polymeric liquids, 2nd edn. Wiley, New York

    Google Scholar 

  23. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, New York

    MATH  Google Scholar 

  24. Evans DJ(1988) Rheological properties of simple fluids by computer simulation. Phys Rev A, 23(4):1981

    Google Scholar 

  25. Erpenbeck JJ (1984) Shear viscosity of the hard-sphere fluid via nonequilibrium molecular dynamics. Phys Rev Lett 52(15):1333

    Article  ADS  Google Scholar 

  26. Yong X, Zhang LT (2012) Nanoscale simple-fluid behavior under steady shear. Phys Rev E 85(5):051202

    Article  ADS  MathSciNet  Google Scholar 

  27. Kay JM, Nedderman RM (1985) Fluid mechanics and transfer processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, Y. (2016). General Entropy Production Based on Dynamical Analysis. In: Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48485-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48485-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48483-8

  • Online ISBN: 978-3-662-48485-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics