Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 658 Accesses

Abstract

Thermal energy has its corresponding equivalent mass according to Einstein’s mass–energy equivalence, which is termed as thermomass. The thermomass theory established the continuous governing equation for the non-Fourier heat conduction. The mass balance equation of thermomass gives the energy conservation equation while the momentum balance equation of thermomass gives the general heat conduction law. The microscopic foundation of the general heat conduction law based on the thermomass theory is investigated. The derivation based on the phonon Boltzmann equation shows that the second order expansion of phonon distribution function leads to the spatial inertia (or convective) term in the general heat conduction law, which makes the difference from the previous phonon hydrodynamic model. Limiting to the first order expansion will give the Cattaneo-Vernotte model, while the zeroth order expansion gives the classical Fourier’s law. Comparison with other derivations of phonon Boltzmann equation such as the Chapman–Enskog expansion and eigenvalue analysis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moller C (1972) The theory of relativity. Clarendon Press, Oxford

    Google Scholar 

  2. Misner CM (1973) Gravitation. WH Freeman and Company, San Francisco

    Google Scholar 

  3. Schroder UE (1990) Special relativity. World Scientific, Singapore

    Book  MATH  Google Scholar 

  4. Rindler W (1982) Introduction to special relativity. Clarendon Press, Oxford

    MATH  Google Scholar 

  5. Einstein A, Infield L (1938) The evolution of physics: the growth of ideas from early concepts to relativity and quanta. Simon and Schuster, New York

    Google Scholar 

  6. Taylor EF, Wheeler JA (1966) Spacetime physics. W.H. Freeman and Company, New York

    Google Scholar 

  7. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    MATH  Google Scholar 

  8. Reissland JA (1973) The physics of phonons. Wiley, London

    Google Scholar 

  9. Guo ZY, Cao BY, Zhu HY et al (2007) State equation of phonon gas and conservation equations for phonon gas motion. Acta Phys Sin 56(6):3306–3312

    Google Scholar 

  10. Guo ZY, Cao BY (2008) A general heat conduction law based on the concept of motion of thermal mass. Acta Phys Sin 57(7):4273–4281

    Google Scholar 

  11. Cao BY, Guo ZY (2007) Equation of motion of a phonon gas and non-Fourier heat conduction. J Appl Phys 102(5):053503

    Article  ADS  Google Scholar 

  12. Tzou DY, Guo ZY (2010) Nonlocal behavior in thermal lagging. Int J Therm Sci 49(7):1133–1137

    Article  Google Scholar 

  13. Guo ZY, Hou QW (2010) Thermal wave based on the thermomass model. J Heat Transfer 132(7):072403

    Article  Google Scholar 

  14. Wang M, Guo ZY (2010) Understanding of temperature and size dependences of effective thermal conductivity of nanotubes. Phys Lett A 374(42):4312–4315

    Article  ADS  MATH  Google Scholar 

  15. Wang M, Yang N, Guo ZY (2011) Non-Fourier heat conductions in nanomaterials. J Appl Phys 110(6):064310

    Article  ADS  Google Scholar 

  16. Wang M, Shan X, Yang N (2012) Understanding length dependences of effective thermal conductivity of nanowires. Phys Lett A 376(46):3514–3517

    Article  ADS  Google Scholar 

  17. Wang HD, Cao BY, Guo ZY (2010) Heat flow choking in carbon nanotubes. Int J Heat Mass Transf 53(9):1796–1800

    Article  MATH  Google Scholar 

  18. Christov CI, Jordan PM (2005) Heat conduction paradox involving second-sound propagation in moving media. Phys Rev Lett 94:154301

    Article  ADS  Google Scholar 

  19. Müller I, Ruggeri T (1993) Extended thermodynamics. Springer, New York

    Book  MATH  Google Scholar 

  20. Guyer RA, Krumhansl JA (1966) Solution of the linearized phonon Boltzmann equation. Phys Rev 148(2):766–778

    Article  ADS  Google Scholar 

  21. Guyer RA, Krumhansl JA (1966) Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys Rev 148(2):778

    Article  ADS  Google Scholar 

  22. Sussmann JA, Thellung A (1963) Thermal conductivity of perfect dielectric crystals in the absence of umklapp processes. Proc Phys Soc 81(6):1122

    Article  ADS  MATH  Google Scholar 

  23. Hardy RJ (1970) Phonon Boltzmann equation and second sound in solids. Phys Rev B 2(4):1193

    Article  ADS  MathSciNet  Google Scholar 

  24. Hardy RJ, Albers DL (1974) Hydrodynamic approximation to the phonon Boltzmann equation. Phys Rev B 10(8):3546

    Article  ADS  Google Scholar 

  25. Gurevich VL (1986) Transport in phonon systems. North-Holland, Amsterdam

    Google Scholar 

  26. Enz CP (1968) One-particle densities, thermal propagation, and second sound in dielectric crystals. Ann Phys 46(1):114–173

    Article  ADS  Google Scholar 

  27. Sahasrabudhe GG, Lambade SD (1999) Temperature dependence of the collective phonon relaxation time and acoustic damping in Ge and Si. J Phys Chem Solids 60(6):773–785

    Article  ADS  Google Scholar 

  28. Banach Z, Larecki W (2008) Chapman-Enskog method for a phonon gas with finite heat flux. J Phys A Math Theor 41(37):375502

    Article  MATH  Google Scholar 

  29. Jiaung WS, Ho JR (2008) Lattice-Boltzmann modeling of phonon hydrodynamics. Phys Rev E 77(6):066710

    Article  ADS  Google Scholar 

  30. Krumhansl JA (1965) Thermal conductivity of insulating crystals in the presence of normal processes. Proc Phys Soc 85(5):921

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, Y. (2016). Dynamical Governing Equations of Non-Fourier Heat Conduction. In: Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48485-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48485-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48483-8

  • Online ISBN: 978-3-662-48485-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics