Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 644 Accesses

Abstract

The traditional Fourier’s law of heat conduction is not applicable in ultrafast and ultrasmall conditions. Non-Fourier models thus have been developed to predict these anomalous heat conductions. This chapter reviews the present non-Fourier heat conduction theories. For ultrafast heat conduction, modification models such as the Cattaneo–Vernotte model, dual phase lag model, and hyperbolic two-step model are developed. The common feature of these models is adding the relaxation terms in the traditional Fourier’s law. For the steady non-Fourier heat conduction in nanosystems, the size effect of the thermal conductivity has been modeled from the phonon-boundary scattering perspective. On the other hand, the combination of non-Fourier conduction models with irreversible thermodynamics will give the negative entropy production, which violates the second law. The extended irreversible thermodynamics modifies the entropy production by extending the category of state variables to mend this paradox. At the end of this chapter, the approach and main aim of this work are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fourier J (1955) Analytical theory of heat. Dover Publications, New York

    MATH  Google Scholar 

  2. Cattaneo C (1948) Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena 3:83–101

    Google Scholar 

  3. Vernotte P (1958) Paradoxes in the continuous theory of the heat equation. CR Acad Sci 246:3154–3155

    MathSciNet  MATH  Google Scholar 

  4. Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    MATH  Google Scholar 

  5. Hu RF, Cao BY (2009) Study on thermal wave based on the thermal mass theory. Sci China Series E Technol Sci 52(6):1786–1792

    Article  MATH  Google Scholar 

  6. Körner C, Bergmann HW (1998) The physical defects of the hyperbolic heat conduction equation. Appl Phys A 67(4):397–401

    Article  ADS  Google Scholar 

  7. Bai C, Lavine AS (1995) On hyperbolic heat conduction and the second law of thermodynamics. J Heat Transf 117(2):256–263

    Article  Google Scholar 

  8. Ackerman CC, Bertman B, Fairbank HA, Guyer RA (1966) Second sound in solid helium. Phys Rev Lett 16:789

    Article  ADS  Google Scholar 

  9. Rogers SJ (1971) Transport of heat and approach to second sound in some isotopically pure Alkali-Halide crystals. Phys Rev B 3(4):1440

    Article  ADS  Google Scholar 

  10. Jackson HE, Walker CT (1971) Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Phys Rev B 3(4):1428

    Article  ADS  Google Scholar 

  11. Mason WP (1968) Physical acoustics: principles and methods, vol V. Academic Press, New York, pp 233–292

    Google Scholar 

  12. Ackerman CC (1968) Temperature pulses in dielectric solids. Ann Phys 50:128–185

    Article  ADS  Google Scholar 

  13. Narayanamurti V, Dynes RC (1972) Observation of second sound in bismuth. Phys Rev Lett 28(22):1461

    Article  ADS  Google Scholar 

  14. Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61(1):41

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Guyer RA, Krumhansl JA (1966) Solution of the linearized phonon Boltzmann equation. Phys Rev 148(2):766–778

    Article  ADS  Google Scholar 

  16. Guyer RA, Krumhansl JA (1966) Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys Rev 148(2):778

    Article  ADS  Google Scholar 

  17. Eesley GL (1983) Observation of nonequilibrium electron heating in copper. Phys Rev Lett 51(23):2140–2143

    Article  ADS  Google Scholar 

  18. Fujimoto JG, Ippen EP, Liu JM et al (1984) Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys Rev Lett 53:1837–1840

    Article  ADS  Google Scholar 

  19. Eesley GL (1986) Generation of nonequilibrium electron and lattice temperatures in copper by picoseconds laser pulses. Phys Rev B 33(4):2144–2151

    Article  ADS  Google Scholar 

  20. Schoenlein RW, Lin WZ, Fujimoto JG, Eesley GL (1987) Femtosecond studies of nonequilibrium electronic processes in metals. Phys Rev Lett 58(16):1680

    Article  ADS  Google Scholar 

  21. Brorson SD, Fujimoto JG, Ippen EP (1987) Femtosecond electronic heat-transport dynamics in thin gold-films. Phys Rev Lett 59(17):1962–1965

    Article  ADS  Google Scholar 

  22. Brorson SD, Kazeroonian A, Moodera JS et al (1990) Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors. Phys Rev Lett 64(18):2172

    Article  ADS  Google Scholar 

  23. Sigel R, Tsakiris GD, Lavarenne F et al (1990) Experimental observation of laser-induced radiation heat waves. Phys Rev Lett 65(5):587

    Article  ADS  Google Scholar 

  24. Wang JC, Guo CL (2007) Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals. Phys Rev B 75:184304

    Article  ADS  Google Scholar 

  25. Wang HD, Ma WG, Zhang X, Wang W (2010) Measurement of the thermal wave in metal films using femtosecond laser thermoreflectance system. Acta Phys Sin 59(6):3856–3862

    Google Scholar 

  26. Qiu TQ, Tien CL (1993) Heat transfer mechanisms during short-pulse laser heating of metals. J Heat Transf 115(4):835–841

    Article  Google Scholar 

  27. Qiu TQ, Tien CL (1994) Femtosecond laser heating of multi-layer metals—I analysis. Int J Heat Mass Transf 37(17):2789–2797

    Article  Google Scholar 

  28. Qiu TQ, Tien CL (1994) Femtosecond laser heating of multi-layer metals—II experiments. Int J Heat Mass Transf 37(17):2799–2808

    Article  Google Scholar 

  29. Özişik MN, Tzou DY (1994) On the wave theory in heat conduction. J Heat Transf 116(3):526–535

    Article  Google Scholar 

  30. Tzou DY (1995) The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf 38(17):3231–3240

    Article  Google Scholar 

  31. Tzou DY (1996) Macro-to microscale heat transfer: the lagging behavior. Taylor & Francis, Washington, DC

    Google Scholar 

  32. Antaki PJ (1998) Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. Int J Heat Mass Transf 41:2253–2258

    Article  MATH  Google Scholar 

  33. Tang DW, Araki N (1999) Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. Int J Heat Mass Transf 42:855–860

    Article  MATH  Google Scholar 

  34. Xu M, Wang L (2002) Thermal oscillation and resonance in dual-phase-lagging heat conduction. Int J Heat Mass Transf 45(5):1055–1061

    Article  MATH  Google Scholar 

  35. Xu M, Wang L (2005) Dual-phase-lagging heat conduction based on Boltzmann transport equation. Int J Heat Mass Transf 48(25):5616–5624

    Article  MATH  Google Scholar 

  36. Shen B, Zhang P (2008) Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model. Int J Heat Mass Transf 51(7):1713–1727

    Article  MATH  Google Scholar 

  37. Chen G (2001) Ballistic-diffusive heat-conduction equations. Phys Rev Lett 86(11):2297–2300

    Article  ADS  Google Scholar 

  38. Christov CI, Jordan PM (2005) Heat conduction paradox involving second-sound propagation in moving media. Phys Rev Lett 94:154301

    Article  ADS  Google Scholar 

  39. Müller I, Ruggeri T (1993) Extended thermodynamics. Springer, New York

    Book  MATH  Google Scholar 

  40. Tsai DH, MacDonald RA (1976) Molecular-dynamical study of second sound in a solid excited by a strong heat pulse. Phys Rev B 14(10):4714

    Article  ADS  Google Scholar 

  41. Volz S, Saulnier JB, Lallemand M et al (1996) Transient Fourier-law deviation by molecular dynamics in solid argon. Phys Rev B 54(1):340

    Article  ADS  Google Scholar 

  42. Shiomi J, Maruyama S (2006) Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys Rev B 73(20):205420

    Article  ADS  Google Scholar 

  43. Hone J, Whitney M, Piskoti C et al (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59(4):R2514

    Article  ADS  Google Scholar 

  44. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613

    Article  ADS  Google Scholar 

  45. Kim P, Shi L, Majumdar A et al (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502

    Article  ADS  Google Scholar 

  46. Pop E, Mann D, Wang Q et al (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100

    Article  ADS  Google Scholar 

  47. Ghosh S, Calizo I, Teweldebrhan D et al (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911

    Article  ADS  Google Scholar 

  48. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  ADS  Google Scholar 

  49. Guo Z, Zhang D, Gong XG (2009) Thermal conductivity of graphene nanoribbons. Appl Phys Lett 95(16):163103

    Article  ADS  Google Scholar 

  50. Asheghi M, Leung YK, Wong SS et al (1997) Phonon-boundary scattering in thin silicon layers. Appl Phys Lett 71(13):1798–1800

    Article  ADS  Google Scholar 

  51. Ju YS, Goodson KE (1999) Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 74(20):3005–3007

    Article  ADS  Google Scholar 

  52. Liu W, Asheghi M (2004) Phonon–boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett 84(19):3819–3821

    Article  ADS  Google Scholar 

  53. Ju YS (2005) Phonon heat transport in silicon nanostructures. Appl Phys Lett 87(15):153106

    Article  ADS  Google Scholar 

  54. Li D, Wu Y, Kim P et al (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934–2936

    Article  ADS  Google Scholar 

  55. Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167

    Article  ADS  Google Scholar 

  56. Boukai AI, Bunimovich Y, Tahir-Kheli J et al (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–171

    Article  ADS  Google Scholar 

  57. Lee SM, Cahill DG, Venkatasubramanian R (1997) Thermal conductivity of Si–Ge superlattices. Appl Phys Lett 70(22):2957–2959

    Article  ADS  Google Scholar 

  58. Chen G, Neagu M (1997) Thermal conductivity and heat transfer in superlattices. Appl Phys Lett 71(19):2761–2763

    Article  ADS  Google Scholar 

  59. Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57(23):14958

    Article  ADS  Google Scholar 

  60. Yang R, Chen G (2004) Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys Rev B 69(19):195316

    Article  ADS  Google Scholar 

  61. Dames C, Chen G (2003) Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J Appl Phys 95(2):682–693

    Article  ADS  Google Scholar 

  62. Capinski WS, Maris HJ, Ruf T et al (1999) Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys Rev B 59(12):8105

    Article  ADS  Google Scholar 

  63. Li D, Wu Y, Fan R et al (2003) Thermal conductivity of Si/SiGe superlattice nanowires. Appl Phys Lett 83(15):3186–3188

    Article  ADS  Google Scholar 

  64. Luckyanova MN, Garg J, Esfarjani K et al (2012) Coherent phonon heat conduction in superlattices. Science 338(6109):936–939

    Article  ADS  Google Scholar 

  65. Henry A, Chen G (2008) High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys Rev Lett 101(23):235502

    Article  ADS  Google Scholar 

  66. Shen S, Henry A, Tong J et al (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5(4):251–255

    Article  ADS  Google Scholar 

  67. Cao BY, Li YW, Kong J et al (2011) High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer 52(8):1711–1715

    Article  Google Scholar 

  68. Cahill DG, Ford WK, Goodson KE et al (2002) Nanoscale thermal transport. J Appl Phys 93(2):793–818

    Article  ADS  Google Scholar 

  69. Kim W, Wang R, Majumdar A (2007) Nanostructuring expands thermal limits. Nano Today 2(1):40–47

    Article  Google Scholar 

  70. Chen G (2005) Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press, Oxford

    Google Scholar 

  71. Baxter J, Bian Z, Chen G et al (2009) Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci 2(6):559–588

    Article  Google Scholar 

  72. Minnich A, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479

    Article  Google Scholar 

  73. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    MATH  Google Scholar 

  74. Reissland JA (1973) The physics of phonons. Wiley, London

    Google Scholar 

  75. Majumdar A (1993) Microscale heat-conduction in dielectric thin-films. J Heat Transfer 115(1):7–16

    Article  Google Scholar 

  76. McGaughey AJH, Landry ES, Sellan DP et al (2011) Size-dependent model for thin film and nanowire thermal conductivity. Appl Phys Lett 99(13):131904

    Article  ADS  Google Scholar 

  77. Ziman JM (2001) Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  78. Mingo N (2003) Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys Rev B 68(11):113308

    Article  ADS  Google Scholar 

  79. Hippalgaonkar K, Huang B, Chen R et al (2010) Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett 10(11):4341–4348

    Article  ADS  Google Scholar 

  80. Moore AL, Saha SK, Prasher RS et al (2008) Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl Phys Lett 93(8):083112

    Article  ADS  Google Scholar 

  81. Carrete J, Gallego LJ, Varela LM, Mingo N (2011) Surface roughness and thermal conductivity of semiconductor nanowires: going below the Casimir limit. Phys Rev B 84(7):075403

    Article  ADS  Google Scholar 

  82. He Y, Galli G (2012) Microscopic origin of the reduced thermal conductivity of silicon nanowires. Phys Rev Lett 108(21):215901

    Article  ADS  Google Scholar 

  83. Sullivan SE, Lin KH, Avdoshenko S et al (2013) Limit for thermal transport reduction in Si nanowires with nanoengineered corrugations. Appl Phys Lett 103(24):243107

    Article  ADS  Google Scholar 

  84. Wang H, Liu J, Guo ZY, Takahashi K (2012) Non-Fourier heat conduction study for steady states in metallic nanofilms. Chin Sci Bull 57(24):3239–3243

    Article  Google Scholar 

  85. Wang HD (2011) Theoretical and experimental studies on non-Fourier heat conduction based on thermomass theory. Doctoral dissertation, Tsinghua University, Beijing

    Google Scholar 

  86. Minnich AJ, Johnson JA, Schmidt AJ et al (2011) Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys Rev Lett 107(9):095901

    Article  ADS  Google Scholar 

  87. Minnich AJ (2012) Determining phonon mean free paths from observations of quasiballistic thermal transport. Phys Rev Lett 109(20):205901

    Article  ADS  Google Scholar 

  88. Johnson JA, Maznev AA, Cuffe J et al (2013) Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys Rev Lett 110(2):025901

    Article  ADS  Google Scholar 

  89. Regner KT, Sellan DP, Su Z et al (2013) Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat Commun 4:1640

    Article  Google Scholar 

  90. Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37(4):405

    Article  ADS  MATH  Google Scholar 

  91. Onsager L (1931) Reciprocal relations in irreversible processes II. Phys Rev 38(12):2265

    Article  ADS  MATH  Google Scholar 

  92. Onsager L, Machlup S (1953) Fluctuations and irreversible processes. Phys Rev 91(6):1505–1512

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Machlup S, Onsager L (1953) Fluctuations and irreversible processes. Phys Rev 91:1512–1515

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 3(11):1349

    Article  ADS  MATH  Google Scholar 

  95. Casimir HBG (1945) On Onsager’s principle of microscopic reversibility. Rev Mod Phys 17(2–3):343

    Article  ADS  Google Scholar 

  96. Coleman BD, Truesdell C (1960) On the reciprocal relations of Onsager. J Chem Phys 33(1):28–31

    Article  ADS  MathSciNet  Google Scholar 

  97. Gyarmati I, Gyarmati E (1970) Non-equilibrium thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  98. Mazur P, de Groot SR (1963) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    MATH  Google Scholar 

  99. Zeng DL (1991) Engineering non-equilibrium thermodynamics. Science Press, Beijing

    Google Scholar 

  100. Spera FJ, Trial AF (1993) Verification of the Onsager reciprocal relations in a molten silicate solution. Science 259(5092):204–206

    Article  ADS  Google Scholar 

  101. Gallavotti G (1996) Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem. J Stat Phys 84(5–6):899–925

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Gabrielli D, Jona-Lasinio G, Landim C (1996) Onsager reciprocity relations without microscopic reversibility. Phys Rev Lett 77(7):1202–1205

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. Sharipov F (2006) Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: single gas. Phys Rev E 73(2):026110

    Article  ADS  MathSciNet  Google Scholar 

  104. Kocherginsky N, Gruebele M (2013) A thermodynamic derivation of the reciprocal relations. J Chem Phys 138(12):124502

    Article  ADS  Google Scholar 

  105. Jou D, Casas-Vazquez J, Lebon G (1999) Extended irreversible thermodynamics revisited (1988–98). Rep Prog Phys 62(7):1035

    Google Scholar 

  106. Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  107. Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  108. Cimmelli VA (2009) Different thermodynamic theories and different heat conduction laws. J Non Equilibr Thermodyn 34(4):299–333

    Article  ADS  MATH  Google Scholar 

  109. Criado-Sancho M, Llebot JE (1993) Behavior of entropy in hyperbolic heat conduction. Phys Rev E 47:4104–4107

    Article  ADS  Google Scholar 

  110. Casas-Vázquez J, Jou D (1994) Nonequilibrium temperature versus local-equilibrium temperature. Phys Rev E 49(2):1040

    Google Scholar 

  111. Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Prog Phys 66(11):1937

    Google Scholar 

  112. Cimmelli VA, Sellitto A, Jou D (2009) Nonlocal effects and second sound in a nonequilibrium steady state. Phys Rev B 79(1):014303

    Article  ADS  Google Scholar 

  113. Cimmelli VA, Sellitto A, Jou D (2010) Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys Rev B 81(5):054301

    Article  ADS  Google Scholar 

  114. Cimmelli VA, Sellitto A, Jou D (2010) Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys Rev B 82(18):184302

    Article  ADS  Google Scholar 

  115. Alvarez FX, Jou D (2008) Size and frequency dependence of effective thermal conductivity in nanosystems. J Appl Phys 103(9):094321

    Article  ADS  Google Scholar 

  116. Sellitto A, Alvarez FX, Jou D (2010) Second law of thermodynamics and phonon-boundary conditions in nanowires. J Appl Phys 107(6):064302

    Article  ADS  Google Scholar 

  117. Jou D, Criado-Sancho M, Casas-Vázquez J (2010) Heat fluctuations and phonon hydrodynamics in nanowires. J Appl Phys 107(8):084302

    Article  ADS  Google Scholar 

  118. Jou D, Cimmelli VA, Sellitto A (2012) Nonlocal heat transport with phonons and electrons: application to metallic nanowires. Int J Heat Mass Transf 55(9):2338–2344

    Article  MATH  Google Scholar 

  119. Sellitto A, Alvarez FX, Jou D (2012) Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires. Int J Heat Mass Transf 5(11):3114–3120

    Article  Google Scholar 

  120. Sellitto A, Cimmelli VA, Jou D (2013) Entropy flux and anomalous axial heat transport at the nanoscale. Phys Rev B 87(5):054302

    Article  ADS  Google Scholar 

  121. Wikipedia (2014) Thermodynamics. http://en.wikipedia.org/wiki/Thermodynamics#cite_note-41. Accessed 08 Apr 2014

  122. Guo ZY, Cao BY, Zhu HY et al (2007) State equation of phonon gas and conservation equations for phonon gas motion. Acta Phys Sin 56(6):3306–3312

    Google Scholar 

  123. Guo ZY, Cao BY (2008) A general heat conduction law based on the concept of motion of thermal mass. Acta Phys Sin 57(7):4273–4281

    Google Scholar 

  124. Cao BY, Guo ZY (2007) Equation of motion of a phonon gas and non-Fourier heat conduction. J Appl Phys 102(5):053503

    Article  ADS  Google Scholar 

  125. Tzou DY, Guo ZY (2010) Nonlocal behavior in thermal lagging. Int J Therm Sci 49(7):1133–1137

    Article  Google Scholar 

  126. Guo ZY, Hou QW (2010) Thermal wave based on the thermomass model. J Heat Transf 132(7):072403

    Article  Google Scholar 

  127. Guo ZY, Zhu HY, Liang XG (2007) Entransy—a physical quantity describing heat transfer ability. Int J Heat Mass Transf 50(13):2545–2556

    Article  MATH  Google Scholar 

  128. Zhu H Y (2007) The minimum thermal resistance principle based on entransy dissipation. Doctoral dissertation, Tsinghua University, Beijing

    Google Scholar 

  129. Chen Q (2008) Irreversibility and optimization of convective transport processes. Doctoral dissertation, Tsinghua University, Beijing

    Google Scholar 

  130. Chen Q, Liang XG, Guo ZY (2013) Entransy theory for the optimization of heat transfer—a review and update. Int J Heat Mass Transf 63:65–81

    Article  Google Scholar 

  131. Cheng XT, Liang XG (2013) From thermomass to entransy. Int J Heat Mass Transf 62:174–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, Y. (2016). Introduction. In: Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48485-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48485-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48483-8

  • Online ISBN: 978-3-662-48485-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics