Skip to main content

Introduction

  • Chapter
  • First Online:
Coordinate Metrology

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

This chapter describes coordinate metrology as an important scientific research area originating from old metrology of geometric quantities. It defines the field and describes the history of the first studies; moreover, it presents applications in production engineering, quality systems, and research works. The first constructions of coordinate measuring machines and their development up to the modern state are discussed. Innovative solutions of contact and noncontact systems are included along with multisensor systems and redundant systems such as measuring arms and laser trackers. Coordinate metrology is also based on imaging and measuring systems using structured light, photogrammetry, laser triangulation, systems based on the measurement of beam returning time (TOF, time of flight), and also computed tomography (CT) and magnetic resonance imaging (MRI). The problem of the coordinate systems’ accuracy and monitoring in accordance with the current standards and recommendations is touched upon, including a new trend in this field, the matrix method (MM) developed by the author. The broad and difficult issue of the measurement accuracy and methods of its assessment including simulation methods (so-called virtual CMMs) is also touched upon. The role of the Laboratory of Coordinate Metrology at Cracow University of Technology (LCM CUT) created by Professor Jerzy A. Sładek in studies on the development of coordinate metrology is presented at the end of chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American National Standard ASME B89.1.12-90—Methods for the Performance Evaluation of Coordinate Measuring Machines. ASME, New York (1991)

    Google Scholar 

  2. Aukom, www.aukom.com

  3. British Standards Institution. Norma BS 6808: Coordinate Measuring Machines. British Standard Institute, London

    Google Scholar 

  4. Berndt, G.: Grudlagen und Gerate technischer Langenmessungen. Julius Springer, Berlin (1921)

    Google Scholar 

  5. Berndt, G., Hultzsch, E., Weinhold, H.: Funktionstoleranz und MeBunsicherheit. Wissen- schaftliche Zeitschrift der Universitat Dresden 17, 465–471 (1968)

    Google Scholar 

  6. Committee “Me”, A proposal for defining and specifying the dimensional uncertainty of multi-axis measuring machines. Annals of the CIRP, vol. 27/2/1978

    Google Scholar 

  7. Coordinate Measuring Machine Manufacturers Association: Norm CMMA: accuracy specification for coordinate measuring machines. CMMA, London, 2nd edn (1989)

    Google Scholar 

  8. Donker, R., Widdershoven, I., Spaan, H.: ISARA 400: a large measurement volume ultra-precision CMM. In: Sładek, J., Jakubiec, W.: Advances in Coordinate Metrology, Monograph, pp. 50–56. University of Bielsko-Biala. (2010)

    Google Scholar 

  9. EVIGEM—European Virtual Institute for geometry measurements EVIGeM)—grouping best research facilities in the field of geometric metrology where the only one representative of Poland is Laboratory of Coordinate Metrology (2002–2007). The EVIGEM purpose is to provide the knowledge in the field of geometric measurements, calibration services and to undertake technical and scientific issues in EU countries

    Google Scholar 

  10. Gąska, A.: Modeling of accuracy of coordinate measurement with use of Monte Carlo Method. Ph.D. theses, Cracow University of Technology, Faculty of Mechanical Engineering, 2011 (Advisor–Prof. J.A. Sladek)

    Google Scholar 

  11. Gąska, A.: Different uses of Monte Carlo Method in coordinate metrology. In: Xth International Scientific Conference Automation in Production Planning and Manufacturing, Zilina, Maj 2009

    Google Scholar 

  12. Geise, G., Hartmann, M.: Geometrische Aspekte bei Ausgleichproblemen in der Koordi- natenmesstechnik. Konferenz INFERT 82, Dresden 1–2 Sept 1982

    Google Scholar 

  13. GOM Optical measuring Techniques, www.gom.com

  14. Hart, H., Lotze, W., Woschni, E.G.: Messgenauigkeit. Verlag Technik, Berlin (1987)

    Google Scholar 

  15. Hartmann, W.W., Geise, G.: Displaydarstellungen als Entscheidungshilfe fur Messauswer- tungsstrategien in der Koordinatenmesstechnik. Feingeratetechnik 1984/1

    Google Scholar 

  16. Hernla, M.: Aufgabenspezifische MeBunsicherheit bei Koordinatenmessung TM 64 7/8, pp. 286–293. Oldenburg Verlag (1997)

    Google Scholar 

  17. Hernla, M. Unsicherheiten einfach abschaetzen. QZ Qualitaet und Zuveraessigkeit, 45 (2000)

    Google Scholar 

  18. Hernla, M.: Messumsicherheit bei Koordinatenmessungen. Expert Verlag (2007)

    Google Scholar 

  19. Hexagon Metrology. www.cognitens.com

  20. Hocken Robert, J., Pereira Paulo, H.: Coordinate Measuring Machines and Systems, 2nd edn. CRC Press, Cleveland (2011)

    Google Scholar 

  21. IBS Precision Engineering. www.ibspe.com

  22. ISO 9000: Series of standards for quality management and quality assurance system

    Google Scholar 

  23. ISO 10360 1–12 Geometrical Product Specifications (GPS)—Acceptance and reverification tests for coordinate measuring machines (CMM)

    Google Scholar 

  24. ISO 15530 Geometrical product specifications (GPS)—Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement

    Google Scholar 

  25. Jakubiec, W.: Analityczne wyznaczanie niepewności pomiaru we współrzędnościowej technice pomiarowej.(Analilitical evaluation of the measurement uncertainty in coordinate measurement technique). University of Bielsko-Biała, Bielsko-Biała. Scientific Books 22 (2008)

    Google Scholar 

  26. Jakubiec, W., Starczak, M.: EMU—friendly software for estimation of measurements uncertainty for CMM. In: 8th International Symposium on Measurement and Quality Control in Production, Erlangen 2004. VDI Verlag GmbH, Dusseldorf (2004)

    Google Scholar 

  27. Jakubiec, W., Starczak, M.: Metodyka wyznaczania niepewności pomiarów współrzędnościowych (Methodology of evaluation of the coordinate measurements uncertainty). In: VIth Internationa Scientific Conference Coordinate Measuring Technique

    Google Scholar 

  28. Jakubiec, W., Weckenmann, A.: Metro-e-learn—European project for manufacturing metrology. In: Xth National, 1st International Scientific-Technical Conference Metrology in Production Engineering. Cracow University of Technology, Cracow (2003)

    Google Scholar 

  29. Jakubiec, W., Plowucha, W., Starczak, M.: The estimation of coordinate measurements uncertainty in industrial conditions. In: VIIth International Scientific Conference Coordinate Measuring Technique. University of Bielsko-Biała, Bielsko-Biała. Scientific Books 22 (2006)

    Google Scholar 

  30. Jakubiec, W., Plowucha, W., Starczak, M.: EMU—oprogramowanie do analitycznego wyznaczania niepewności pomiarów współrzędnościowych (Software for analytical evaluation of the coordinate measurements uncertainty). In: Sładek, J., Jakubiec, W. (eds.) Advances in Coordinate Metrology, pp. 83–89, Monograph. University of Bielsko-Biała, Bielsko-Biała (2010)

    Google Scholar 

  31. Jakubiec, W., Plowucha, W., Starczak, M., Wizner, M.: Wdrażanie oprogramowania do analitycznego wyznaczania niepewności pomiarów współrzędnościowych (Implementation of the software for analytical evaluation of the coordinate measurements uncertainty). In: Sładek, J., Jakubiec, W. (eds.) Advances in Coordinate Metrology, Monograph, pp. 90–97. University of Bielsko-Biała, Bielsko-Biała (2010)

    Google Scholar 

  32. Jakubiec, W., Plowucha, W., Starczak, M.: Analytical evaluation of the coordinate measurements uncertainty. In: Sładek, J., Jakubiec, W. (eds.) Advances in Coordinate Metrology, Monograph, pp. 169–176. University of Bielsko-Biala (2010)

    Google Scholar 

  33. Keferstein, C., Marxer, M., Jakubiec, W., Weckenmann, A., Beetz S.: EUKOM—European training for coordinate metrology. In: 8th International Symposium on Measurement and Quality Control in Production, Erlangen. VDI Verlag GmbH, Duesseldorf (2004)

    Google Scholar 

  34. Leica Geosystems AG. www.metrology.leica-geosystems.com

  35. Leitz. www.leitz-metrology.com

  36. Lotze, W.: Prufkorper fur Koordinatenmessgeraten. Feingeratetechnik 30 (1981), und VDI-Z 123, pp. 154–155 (1981)

    Google Scholar 

  37. Lotze, W.: Rechnergestutzte Koordinatenmesstechnik. Werkstatt und Betrieb 113 1980/6, pp. 391–395

    Google Scholar 

  38. Lotze, W., Teichmann, U.: Einfluss von Gestalt—und Lageabweichungen auf die Unsicher- heit der Rechnergestutzehn Koordinatenmessung. Feingeratetechnik 8, 139–343 (1976)

    Google Scholar 

  39. Lotze, W., Teichmann, U.: Genauigkeit und Prufung von Koordinatenmessgeraten. Feingeratetechnik 35/86, 339–342

    Google Scholar 

  40. Matthias, E., Schultschik, R.: Definition und Beschreibbarkeit der dreidimensionalen Mes- sunsicherheit. Bericht von ETH Zurich IWF (1976)

    Google Scholar 

  41. Nawara, L., Kowalski, M.: Analiza błędów w pomiarach przestrzennych (Analysis of errors in spatial measurements). Mechanik 12/80, 674–679

    Google Scholar 

  42. Neugebauer, M.: Precision size and form measurements with a micro CMM F25. In: Sładek, J., Jakubiec, W. (eds.) Advances in Coordinate Metrology, Monograph, pp. 44–49. University of Bielsko-Biala (2010)

    Google Scholar 

  43. Ostrowska, K.: Accuracy assessment method for measurements done with the use of articulated arm coordinate measuring machines. Ph.D. theses, Cracow University of Technology, Faculty of Mechanical Engineering, 2010 (Advisor–Prof. J.A. Sladek)

    Google Scholar 

  44. ONORM M 1380–1386—Koordinatenmesstechnik Vornormen

    Google Scholar 

  45. Pfeifer, T., Bambach, M.: Definition und Prufung von Kriterien zur Bestimmung system- atischer und zufalliger Fehler von Dreikoordinatenmessgeraten. Forschungsberichte des Landes Nordhein-Westfalen No. 2856

    Google Scholar 

  46. Pressel, H.G.: Genau messen mit Koordinatenmessgeraeten. Expert Verlag, Renningen-Malmsheim (2003)

    Google Scholar 

  47. Romer. www.romer.eu

  48. Sitnik, R., Sładek, J., et al.: Opto-numeryczny system do pomiaru elementów geometrycznych zintegrowany z Współrzędnościową Maszyną Pomiarową (Opto-numeric system integrated with Coordinate Measuring Machine for measuring geometrical elements). Research grant no. 3 T10C 010 29

    Google Scholar 

  49. Sładek, J.: Assessment of the accuracy of contact probe heads used in coordinate measuring machines. Ph.D. theses, Cracow University of Technology, Faculty of Mechanical Engineering (1990)

    Google Scholar 

  50. Sładek, J.: Strategy of applying coordinate metrology in quality assurances systems with regards to a measuring accuracy. In: Ford, D.G., Postlethwaite, S.R. (eds.) Laser Metrology and Machine Performance, III, pp. 497–508. Computational Mechanic Publications, Southampton–Boston (1997)

    Google Scholar 

  51. Sładek, J.: Modelowanie współrzędnościowych maszyn pomiarowych – macierzowa metoda identyfikacji błędów (Modeling of coordinate measuring machines—matrix method for errors identification). VIII Konferencja Naukowo-Techniczna pt. Metrologia w technikach wytwarzania maszyn, pp. 437–444. Szczecin University of Technology, Szczecin (1999)

    Google Scholar 

  52. Sładek, J.: Errors identification and measurement accuracy assessment of coordinate measuring machines (CMM). Advances in Technology of Machines and Equipment, vol. 23(4), pp. 113–136. Postępy Technologii Maszyn i Urządzeń, kwartalnik PAN (1999)

    Google Scholar 

  53. Sładek, J.: Model wirtualny WMP z zastosowaniem do oceny dokładności realizowanych pomiarów w warunkach czasu quasi-rzeczywistego (CMM virtual model with the application to accuracy assessment of measurements realized in equations of quasi- real time). In: IVth International Scientific Conference—Coordinate Measuring Technique, pp. 193–208. Lodz University of Technology Scientific Books, branch in Bielsko-Biała, no. 53, Bielsko-Biała (2000)

    Google Scholar 

  54. Sładek, J.: A neural network model of CMM applied for measurement accuracy assessment. In: Proceedings IMECO World Congress, Vienna, 23–26 Sept 2000, vol. 11, pp. 281–286

    Google Scholar 

  55. Sładek, J.: Modelowanie i ocena dokładności maszyn oraz pomiarów współrzędnościowych (Modeling and accuracy assessment of coordinate machines and measurements). Cracow University of Technology Scientific Books, Mechanika no. 87, Cracow (2001)

    Google Scholar 

  56. Sładek, J.: Conception of description of coordinate measurement accuracy—on the basis of determination 3D—point uncertainty error. J. Mech. Eng. 53(6) (2002)

    Google Scholar 

  57. Sładek, J.: The relationship between measuring machines performance specifications and their real capability to solve given measurement tasks, METROMEET 2005 International Conference on Industrial Dimensional Metrology Bilbao (Spain), 7–8 April 2005, Euskalduna Jauregia Invited Lecture

    Google Scholar 

  58. Sładek, J.: Opracowanie systemu oceny dokładności pomiarów oraz metody identyfikacji własnego pola błędów współrzędnościowych maszyn pomiarowych (Developing of a system for assessing the accuracy of measurements and of a method for identification coordinate measuring machines machine’s errors field). Final Report of the Research Project funded by the KBN under contract No. PB-0921/T07/99/1 1999–2001

    Google Scholar 

  59. Sładek, J.: Metoda oceny dokładności pomiarów realizowanych redundantnymi systemami współrzędnościowymi (RSW) [Method for accuracy assessment of measurements done with the use of redundant coordinate systems (RCS)]. Research Project No. N505 255935, Ministry of Science and Higher Education (2008–2010)

    Google Scholar 

  60. Sładek, J.: Badania rozwojowe nad wzorcowaniem (z wykorzystaniem Laser Tracera) i wyznaczanie niepewności pomiarów dla systemów współrzędnościowych (Development researches on calibration (with the use of Laser Tracer) and determination of measurements uncertainty for coordinate systems). Grant no. 0869/R/T022010/10, National Centre of Research and Development (2010–2013)

    Google Scholar 

  61. Sładek, J., Gawlik, K.: Looking for uncertainty of measurement—virtual machines based on the matrix method using artificial neural networks. In: IV International Congress on Precision Machining 2007, Sandomierz-Kielce (2007)

    Google Scholar 

  62. Sładek, J., Gąska, A.: Modelling of CMM probe head errors. In: Proceedings of 10th ISMQC—TC14 IMEKO, 5–9 Sept 2010, Osaka Japan

    Google Scholar 

  63. Sładek, J., Kowalski, M.: Opracowanie wirtualnej wielowspółrzędnościowej maszyny pomiarowej z zastosowaniem do badań i korekcji błędów obiektów rzeczywistych i optymalizacji pomiarów (Development of virtual multi-coordinate measuring machine with the application for researches and correction of errors of real objects and for measurements optimization). PB 1367/T0795/08 KBN, Research Grant (1995–1998)

    Google Scholar 

  64. Sładek, J., Krawczyk, M.: Metody oceny dokładności pomiarów współrzędnościowych (Methods for coordinate measurements accuracy assessment). Pomiary Automatyka Kontrola (Measurement Automation and Monitoring) No. 9, vol. 53, pp. 478–481 (2007)

    Google Scholar 

  65. Sładek, J., Rakoczy, R.: CMM virtual modelling applied for measuring accuracy assessment. In: Proceedings of 1st International Workshop on CMM Calibration, 1–2 June 1999. Published by The Czech Metrological Institute, Prague Czech Republic

    Google Scholar 

  66. Sładek, J., Rakoczy, R.: Wykorzystanie koncepcji sztucznych sieci neuronowych do modelowania współrzędnościowej maszyny pomiarowej (WMP) przy zastosowaniu wzorca przestrzennego (The use of the concept of artificial neural networks for modeling the coordinate measuring machine (CMM) with the use of spatial standard). Works of Institute of Machine Technology and Production Automation, Polish Academy of Sciences, The Committee on Machine Building, Technology Bases Section, Scientific Book no. 63, pp. 193–206. Cracow University of Technology (1999)

    Google Scholar 

  67. Sładek, J., Szewczyk, D.: Wykorzystanie Simulatora I++ w nauczaniu metrologii współrzędnościowej i pracach badawczych (The use of Simulator I++ in coordinate metrology teaching and in research works). In: Proceedings of XIVth National, Vth International Scientific-Technical Conference Metrology in Production Engineering, Warsaw University of Technology, Sept 2011

    Google Scholar 

  68. Sładek, J., Rakoczy, R., Szwajkowski, A.: Application of neural networks for modelling coordinate measuring machines. In: Kunzmann, H., Waeldele, F., Wilkening, G., Corbet, J., MacKeow, P., Weck, M., Huemmler, J.: Progress in Precision Engineering and Nanotechnology, vol. 1, pp. 323–326, PTB-Braunschweig u. Berlin P.u.Oe-Verlag (1997)

    Google Scholar 

  69. Sładek, J., Kowalski, M., Ryniewicz, A., Juras, B., Muzyka-Zmudzki, M.: The method of the identification of the Orientation of control standard plater for the assessment of large coordinate measuring machine’s (LCMM’s) accuracy. In: Measurement 2005, 5th International Conference, Smolice Slovakia (2005)

    Google Scholar 

  70. Sładek, J., Kowalski, M., et al.: Identification method of the CMM measurement subspace localization based on location errors. In: VII International Scientific Conference Coordinate Measuring Technique, Bielsko-Biala, vol. 22(7), pp. 291–301 (2006)

    Google Scholar 

  71. Sładek, J., Ostrowska, K., Gacek, K.: Kinematic metrological model of the coordinate measuring arm (MCMA). In: XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6–11 sept 2009

    Google Scholar 

  72. Sładek, J., et al.: System metrologicznego nadzoru nad dokładnością maszyn pomiarowych robotów i obrabiarek z wykorzystaniem wzorców interferometrycznych laserowych systemów śledzących jako podst. wzrostu jakości produkcji przemysłu maszynowego (The metrological supervision system on accuracy of measuring machines and robots and machine tools with the use of interferometric standards of laser tracking systems as base for the increase in the quality of production in engineering industry). Research and Development Project no. (R03 029 01): implemented in 2006–2009

    Google Scholar 

  73. Sładek, J., Juras, B., Krawczyk, M., Gąska, A.: Modelling of the probing system errors by use of Monte Carlo Method. In: Sładek, J., Jakubiec, W. (eds.) Advances in Coordinate Metrology, Monograph. University of Bielsko-Biała (2010)

    Google Scholar 

  74. Sładek, J., Ostrowska, K., Gąska, A.: Wirtualne współrzędnościowe ramię pomiarowe (WWRP) (Virtual articulated arm coordinate measuring machine (VAACMM). Pomiary Automatyka Kontrola (Measurement Automation and Monitoring), 01/2010

    Google Scholar 

  75. Teichmann U.: Metrologische Probleme bei der Pruefung von koordinatenmessgeraeten. Feingeraetentechnik 3 (1978)

    Google Scholar 

  76. Tesa technology. www.tesabs.ch

  77. TRACES—Transnational Calibration Expert System (2005–2007) C517456 TRACES Project—European Research and Development Project implemented under e-Ten to develop new type of service targeted to the industry using the most advanced measurement technologies in the production of machines and tools. Its participants beside Laboratory of Coordinate Metrology were: leading German scientific institute Physikalisch Technischen Bundesanstalt in Braunscheig—(German Office of Measures) as the project coordinator, Laboratory of Coordinate Metrology in Cracow University of Technology—Poland, Danish Technical University in Copenhagen, CMI—Czech Metrology Institute, Spanish research center UNIMETRIK, Italian CERMET, German calibration center DKD-1—FEINMESS, Czech VUOS and ETALON AG Germany, 2005–2007

    Google Scholar 

  78. VDI/VDE 2617 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Pruefung

    Google Scholar 

  79. Weckenmann, A.: Koordinatenmesstechnik—Flexible Strategien für Funktion und fertigungsgerechtes Prüfen Carl Hanser Verlag München, Wien 2012

    Google Scholar 

  80. Weckenmann, A.: Ubersicht uber Abnahme und Uberwachungsverfahren fur Mehrkoordi- naten-Messgerate. VDI-B 378, pp. 1–10 (1980)

    Google Scholar 

  81. Werth Messtechnik GmbH. www.werth.de

  82. Wirtz, A.: Sind Geometriemerkmale nach DIN und ISO mit der Drei-Koordinaten-Messtech-nik erfassbar, VDI-B 529 (1984)

    Google Scholar 

  83. Zeiss. www.zeiss.pl/imt

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy A. Sładek .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sładek, J.A. (2016). Introduction. In: Coordinate Metrology . Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48465-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48465-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48463-0

  • Online ISBN: 978-3-662-48465-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics