Skip to main content

Invariant Theory of Infinite Groups

  • Chapter
  • First Online:
  • 2165 Accesses

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS))

Abstract

Throughout this section G will be a linearly reductive group over an algebraically closed field K and V will be an n-dimensional rational representation. We will present an algorithm for computing generators of the invariant ring K[V ]G (see Derksen [1]). This algorithm is actually quite simple and it is easy to implement. The essential step is just one Gröbner basis computation. We will also need the Reynolds operator. For now, the Reynolds operator \(\mathcal{R}\) is just a black box which has the required properties (see Definition 2.2.2). In Sect. 4.5 we will study how to compute the Reynolds operator for several examples of linearly reductive groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harm Derksen, Computation of invariants for reductive groups, Adv. in Math. 141 (1999), 366–384.

    Google Scholar 

  2. Bernd Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, Wien, New York 1993.

    Book  MATH  Google Scholar 

  3. Domingo Luna, Slices étales, Bull. Soc. Math. France 33 (1973), 81–105.

    MATH  Google Scholar 

  4. Vladimir L. Popov, Ernest B. Vinberg, Invariant theory, in: N. N. Parshin, I. R. Shafarevich, eds., Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences 55, Springer-Verlag, Berlin, Heidelberg 1994.

    Google Scholar 

  5. D. Khadzhiev, Some questions in the theory of vector invariants, Mat. Sb., Nov. Ser. 72 (3) (1967), 420–435, English Translation: Math. USSR, Sb. 1, 383–396..

    Google Scholar 

  6. Frank Grosshans, Observable groups and Hilbert’s fourteenth problem, Am. J. Math. 95 (1) (1973), 229–253.

    Google Scholar 

  7. Lorenzo Robbiano, Moss Sweedler, Subalgebra bases, in: W. Bruns, A. Simis, eds., Commutative Algebra, Lecture Notes in Math. 1430, pp. 61–87, Springer-Verlag, New York 1990.

    Google Scholar 

  8. Jozsef Beck, Vera T. Sós, Discrepancy theory, in: R. L. Graham, Martin Grötschel, Laszlo Lovász, eds., Handbook of Combinatorics, vol. 2, pp. 1405–1488, North-Holland, 1995.

    Google Scholar 

  9. Bernd Sturmfels, Neil White, Gröbner bases and Invariant Theory, Adv. Math. 76 (1989), 245–259.

    Google Scholar 

  10. Alfred Young, On quantitive substitutional analysis (3rd paper), Proc. London Math. Soc. 28 (1928), 255–292.

    Google Scholar 

  11. W. V. D. Hodge, D. Pedoe, Methods of Algebraic Geometry, Cambridge University Press, Cambridge 1947.

    Google Scholar 

  12. James E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, Heidelberg, New York 1980.

    Google Scholar 

  13. Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics D1, Vieweg, Braunschweig/Wiesbaden 1985.

    Google Scholar 

  14. Hermann Weyl, Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen I, Math. Z. 23 (1925), 271–309.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hermann Weyl, Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen II,III,IV, Math. Z. 24 (1926), 328–376, 377–395, 789–791.

    Google Scholar 

  16. F. Adams, Lectures on Lie Groups, W.A. Benjamin, New York, Amsterdam 1969.

    Google Scholar 

  17. D. P. Zhelobenko, Compact Lie Groups and Their Representations, Transl. Math. Monogr. 40, American Mathematical Society, Providence 1973.

    Google Scholar 

  18. Tonny A. Springer, On the Invariant Theory of \(\mathrm{SU}_{2}\), Nederl. Akad. Wetensch. Indag. Math. 42 (3) (1980), 339–345.

    Google Scholar 

  19. Theodor Bröcker, Tammo tom Dieck, Representations of Compact Lie Groups, vol. 98 of Graduate Texts in Mathematics, Springer-Verlag, New York–Berlin 1985.

    Google Scholar 

  20. Abraham Broer, A new method for calculating Hilbert series, J. of Algebra 168 (1994), 43–70.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. M. Cohen, A. E. Brouwer, The Poincaré series of the polynomials invariant under \(\mathrm{SU}_{2}\) in its irreducible representation of degree ≤ 17, Math. Centrum Amsterdam Afd. Zuivere Wiskunde ZW 134/79 (1979), 1–20.

    Google Scholar 

  22. Peter Littelmann, Claudio Procesi, On the Poincaré series of the invariants of binary forms, J. of Algebra 133 (1990), 490–499.

    Article  MathSciNet  MATH  Google Scholar 

  23. Jacques Dixmier, Quelques résultats et conjectures concerant les séries de Poincaré des invariants des formes binaires, in: Sém. d’Algèbre P. Dubreil and M. P. Malliavin, vol. 1146 of Lecture Notes in Mathematics, pp. 127–160, Springer-Verlag, Berlin 1985.

    Google Scholar 

  24. David Hilbert, Über die vollen Invariantensysteme, Math. Ann. 42 (1893), 313–370.

    Google Scholar 

  25. George Kempf, The Hochster-Roberts theorem of invariant theory, Michigan Math. J. 26 (1979), 19–32.

    Google Scholar 

  26. Harm Derksen, Polynomial bounds for rings of invariants, Proc. Amer. Math. Soc. 129 (2001), 955–963.

    Article  MathSciNet  MATH  Google Scholar 

  27. Vladimir L. Popov, Constructive invariant theory, Astérique 87–88 (1981), 303–334.

    Google Scholar 

  28. Vladimir L. Popov, The constructive theory of invariants, Math. USSR Izvest. 10 (1982), 359–376.

    Google Scholar 

  29. Karin Hiss, Constructive invariant theory for reductive algebraic groups, preprint, 1993.

    Google Scholar 

  30. Robin Hartshorne, Algebraic Geometry, Springer-Verlag, New York, Heidelberg, Berlin 1977.

    Book  MATH  Google Scholar 

  31. William Fulton, Intersection Theory, Springer-Verlag, Berlin, Heidelberg, New York 1984.

    Book  MATH  Google Scholar 

  32. B. Kazarnovskij, Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations, Functional Analysis and its Applications 21(4) (1987), 73–74.

    Google Scholar 

  33. Michel Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J. 58 (1989), 397–424.

    Google Scholar 

  34. Harm Derksen, Hanspeter Kraft, Constructive Invariant Theory, in: Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), vol. 36 of Sémin. Congr., pp. 221–244, Soc. Math. France, Paris 1997.

    Google Scholar 

  35. David Wehlau, Constructive invariant theory for tori, Ann. Inst. Fourier 43, 4 (1993).

    Google Scholar 

  36. Guenter Ewald, Uwe Wessels, On the ampleness of invertible sheaves in complete projective toric varieties, Result. Math. 19 (1991), 275–278.

    Article  MathSciNet  MATH  Google Scholar 

  37. Victor G. Kac, Vladimir L. Popov, Ernest B. Vinberg, Sur les groupes linéaires algébriques dont l’algèbre des invariants est libre, C. R. Acad. Sci., Paris, Ser. A 283 (1976), 875–878.

    Google Scholar 

  38. Vladimir L. Popov, Representations with a free module of covariants, Funkts. Anal. Prilozh. 10 (1976), 91–92, English transl.: Funct. Anal. Appl. 10 (1997), 242–244.

    Google Scholar 

  39. Victor G. Kac, On the question of describing the orbit space of linear algebraic groups, Usp. Mat. Nauk 30 (6) (1975), 173–174, (Russian).

    Google Scholar 

  40. A. M. Popov, Finite isotropy subgroups in general position in simple linear Lie groups, Tr. Mosk. Math. O.-va 48 (1985), 7–59, English transl.: Trans. Mosc. Math. Soc. 1986 (1988), 3–63.

    Google Scholar 

  41. A. M. Popov, Finite isotropy subgroups in general position in irreducible semisimple linear Lie groups, Tr. Mosk. Math. O.-va 50 (1985), 209–248, English transl.: Trans. Mosc. Math. Soc. 1988 (1988), 205–249.

    Google Scholar 

  42. O. M. Adamovich, E. .O. Golovina, Simple linear Lie groups having a free algebra of invariants, in: Vopr. Teor. Grupp. Gomologicheskoj Algebry, vol. 2, pp. 3–41, 1979, English transl.: Sel. Math. Sov. 3 (2) (1984), 183–220.

    Google Scholar 

  43. Gerald Schwarz, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), 167–197.

    Google Scholar 

  44. O. M. Adamovich, Equidimensional representations of simple algebraic groups, in: Geom. Metod. Zadach. Algebry Anal., vol. 2, pp. 120–125, 1980, English transl.: Transl., II. Ser., Ann. Math. Soc. 128 (1986), 25–29.

    Google Scholar 

  45. Peter Littelmann, Koreguläre und äquidimensionale Darstellungen, J. of Algebra 123 (1) (1989), 193–222.

    Article  MathSciNet  MATH  Google Scholar 

  46. Victor G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190–213.

    Google Scholar 

  47. Jiri Dadoc, Victor G. Kac, Polar representations, J. Algebra 92 (2) (1985), 504–524.

    Google Scholar 

  48. David Wehlau, Equidimensional representations of 2-simple groups, J. Algebra 154 (1993), 437–489.

    Article  MathSciNet  MATH  Google Scholar 

  49. Gregor Kemper, Computing invariants of reductive groups in positive characteristic, Transformation Groups 8 (2003), 159–176.

    Article  MathSciNet  MATH  Google Scholar 

  50. Harm Derksen, Gregor Kemper, Computing invariants of algebraic group actions in arbitrary characteristic, Adv. Math. 217 (2008), 2089–2129.

    Article  MathSciNet  MATH  Google Scholar 

  51. David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York 1995.

    MATH  Google Scholar 

  52. Martin Kreuzer, Lorenzo Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin 2000.

    Google Scholar 

  53. David Mumford, John Fogarty, Frances Kirwan, Geometric Invariant Theory, Ergebnisse der Math. und ihrer Grenzgebiete 34, third edn., Springer-Verlag, Berlin, Heidelberg, New York 1994.

    Google Scholar 

  54. Masayoshi Nagata, Invariants of a group in an affine ring, J. Math. Kyoto Univ. 3 (1963/1964), 369–377.

    Google Scholar 

  55. Tobias Kamke, Algorithms for the computation of invariant rings, Dissertation, Technische Universität München, 2009.

    Google Scholar 

  56. Jörn Müller-Quade, Thomas Beth, Calculating generators for invariant fields of linear algebraic groups, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Honolulu, HI, 1999), Lecture Notes in Comput. Sci. 1719, pp. 392–403, Springer, Berlin 1999.

    Google Scholar 

  57. Evelyne Hubert, Irina A. Kogan, Rational invariants of an algebraic groups action. Constructing and rewriting, J. Symb. Comput. 42 (2007), 203–217.

    Google Scholar 

  58. Tobias Kamke, Gregor Kemper, Algorithmic invariant theory of nonreductive groups, Qualitative Theory of Dynamical Systems 11 (2012), 79–110.

    Article  MathSciNet  MATH  Google Scholar 

  59. Gregor Kemper, Using extended Derksen ideals in computational invariant theory, J. Symolic Comput. 72 (2016), 161–181.

    Article  MathSciNet  MATH  Google Scholar 

  60. Gregor Kemper, The computation of invariant fields and a constructive version of a theorem by Rosenlicht, Transformation Groups 12 (2007), 657–670.

    Article  MathSciNet  MATH  Google Scholar 

  61. José M. Giral, Krull dimension, transcendence degree and subalgebras of finitely generated algebras, Arch. Math. (Basel) 36 (1981), 305–312.

    Google Scholar 

  62. Gregor Kemper, A Course in Commutative Algebra, Graduate Texts in Mathematics 256, Springer-Verlag, Berlin, Heidelberg 2011.

    Google Scholar 

  63. Mark Fels, Peter J. Olver, Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127–208.

    Google Scholar 

  64. Evelyne Hubert, Irina A. Kogan, Smooth and algebraic invariants of a group action: local and global constructions, Found. Comput. Math. 7 (2007), 455–493.

    Google Scholar 

  65. Abraham Broer, The direct summand property in modular invariant theory, Transform. Groups 10 (2005), 5–27.

    Article  MathSciNet  MATH  Google Scholar 

  66. Melvin Hochster, Craig Huneke, Applications of the existence of big Cohen-Macaulay algebras, Adv. Math. 113 (1995), 45–117.

    Article  MathSciNet  MATH  Google Scholar 

  67. Shigeru Mukai, An introduction to invariants and moduli, vol. 81 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 2003, Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury.

    Google Scholar 

  68. Gregor Kemper, Using extended Derksen ideals in computational invariant theory, preprint, Technische Universität München, 2014, http://arxiv.org/abs/1310.6851v2.

  69. Arno van den Essen, An algorithm to compute the invariant ring of a \(G_{a}\) -action on an affine variety, J. Symbolic Comput. 16 (1993), 551–555.

    Google Scholar 

  70. Masayoshi Miyanishi, Curves on rational and unirational surfaces, vol. 60 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi 1978.

    Google Scholar 

  71. Gene Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences 136, Springer-Verlag, Berlin 2006.

    Google Scholar 

  72. Ryuji Tanimoto, An algorithm for computing the kernel of a locally finite iterative higher derivation, J. Pure Appl. Algebra 212 (2008), 2284–2297.

    Article  MathSciNet  MATH  Google Scholar 

  73. Daniel Daigle, Gene Freudenburg, A counterexample to Hilbert’s fourteenth problem in dimension 5, J. Algebra 221 (1999), 528–535.

    Google Scholar 

  74. Gert-Martin Greuel, Gerhard Pfister, Geometric quotients of unipotent group actions, Proc. London Math. Soc. (3) 67 (1993), 75–105.

    Google Scholar 

  75. Carlos Sancho de Salas, Invariant theory for unipotent groups and an algorithm for computing invariants, Proc. London Math. Soc. (3) 81 (2000), 387–404.

    Google Scholar 

  76. Gregor Kemper, Quotients by connected solvable groups, in preparation, 2015.

    Google Scholar 

  77. Masayoshi Nagata, Lectures on the Fourteenth Problem of Hilbert, Tata Institute of Fundamental Research, Bombay 1965.

    MATH  Google Scholar 

  78. Jörg Winkelmann, Invariant rings and quasiaffine quotients, Math. Zeitschrift 244 (2003), 163–174.

    Article  MathSciNet  MATH  Google Scholar 

  79. Emilie Dufresne, Finite separating sets and quasi-affine quotients, J. Pure Appl. Algebra 217 (2013), 247–253.

    Article  MathSciNet  MATH  Google Scholar 

  80. Nobuharu Onoda, Ken-ichi Yoshida, On Noetherian subrings of an affine domain, Hiroshima Math. J. 12 (1982), 377–384.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derksen, H., Kemper, G. (2015). Invariant Theory of Infinite Groups. In: Computational Invariant Theory. Encyclopaedia of Mathematical Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48422-7_4

Download citation

Publish with us

Policies and ethics