Skip to main content

Constructive Ideal Theory

  • Chapter
  • First Online:
Computational Invariant Theory

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS))

  • 2078 Accesses

Abstract

In this chapter we provide the basic algorithmic tools which will be used in later chapters. More precisely, we introduce some algorithms of constructive ideal theory, almost all of which are based on Gröbner bases. As the reader will find out, these algorithms and thus Gröbner bases literally permeate this book. We restrict ourselves to giving a rather short overview of the part of the theory that we require. The chapter covers Gröbner bases, elimination ideals, syzygies, Hilbert series, radical ideals, and normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernd Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, Wien, New York 1993.

    Book  MATH  Google Scholar 

  2. Thomas Becker, Volker Weispfenning, Gröbner Bases, Springer-Verlag, Berlin, Heidelberg, New York 1993.

    Book  MATH  Google Scholar 

  3. William W. Adams, Phillippe Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics 3, American Mathematical Society, Providence, RI 1994.

    Google Scholar 

  4. David Cox, John Little, Donal O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York, Berlin, Heidelberg 1992.

    Book  MATH  Google Scholar 

  5. Wolmer V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Algorithms and Computation in Mathematics 2, Springer-Verlag, Berlin, Heidelberg, New York 1998.

    Google Scholar 

  6. Martin Kreuzer, Lorenzo Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin 2000.

    Google Scholar 

  7. Martin Kreuzer, Lorenzo Robbiano, Computational Commutative Algebra 2, Springer-Verlag, Berlin 2005.

    Google Scholar 

  8. Gert-Martin Greuel, Gerhard Pfister, A Singular Introduction to Commutative Algebra, Springer-Verlag, Berlin 2002.

    Book  MATH  Google Scholar 

  9. Viviana Ene, Jürgen Herzog, Gröbner bases in Commutative Algebra, Graduate Studies in Mathematics 130, American Mathematical Society, Providence, RI 2012.

    Google Scholar 

  10. David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York 1995.

    MATH  Google Scholar 

  11. Gregor Kemper, A Course in Commutative Algebra, Graduate Texts in Mathematics 256, Springer-Verlag, Berlin, Heidelberg 2011.

    Google Scholar 

  12. CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, available at http://cocoa.dima.unige.it, 2000.

  13. Daniel R. Grayson, Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/, 1996.

  14. Wieb Bosma, John J. Cannon, Catherine Playoust, The Magma algebra system I: The user language, J. Symb. Comput. 24 (1997), 235–265.

    Google Scholar 

  15. Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, Hans Schönemann, Singular 4-0-2 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2015.

  16. Bruno Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal (German), Dissertation, Institute for Mathematics, University of Innsbruck 1965.

    MATH  Google Scholar 

  17. H. Michael Möller, Ferdinando Mora, Upper and lower bounds for the degree of Gröbner bases, in: John Fitch, ed., EUROSAM 84, Proc. Int. Symp. on Symbolic and Algebraic Computation, Lect. Notes Comput. Sci. 174, pp. 172–183, Springer-Verlag, Berlin, Heidelberg, New York 1984.

    Google Scholar 

  18. Joachim von zur Gathen, Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Cambridge 1999.

    Google Scholar 

  19. J. C. Faugère, P. Gianni, D. Lazard, T. Mora, Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symb. Comput. 16 (1993), 329–344.

    Google Scholar 

  20. Stéphane Collart, Michael Kalkbrenner, Daniel Mall, Converting bases with the Gröbner walk, J. Symb. Comput. 24 (1997), 465–469.

    Article  MATH  Google Scholar 

  21. Frank-Olaf Schreyer, Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrass’schen Divisionssatz, Diplomarbeit, Universität Hamburg, 1980.

    Google Scholar 

  22. David Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473–534.

    Google Scholar 

  23. David Cox, John Little, Donal O’Shea, Using Algebraic Geometry, Springer-Verlag, New York 1998.

    Google Scholar 

  24. Robin Hartshorne, Algebraic Geometry, Springer-Verlag, New York, Heidelberg, Berlin 1977.

    Book  MATH  Google Scholar 

  25. Dave Bayer, Mike Stillman, Computation of Hilbert functions, J. Symbolic Computation 14 (1992), 31–50.

    Google Scholar 

  26. Anna Maria Bigatti, Massimo Caboara, Lorenzo Robbiano, Computation of Hilbert-Poincaré series, Applicable Algebra in Engineering, Communication and Computing 2 (1993), 21–33.

    Google Scholar 

  27. Patrizia Gianni, Barry Trager, Gail Zacharias, Gröbner bases and primary decomposition of polynomial ideals, J. Symb. Comput. 6 (1988), 149–267.

    Google Scholar 

  28. Teresa Krick, Alessandro Logar, An algorithm for the computation of the radical of an ideal in the ring of polynomials, in: Harold F. Mattson, Teo Mora, T. R. N. Rao, eds., Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-9), Lect. Notes Comput. Sci. 539, pp. 195–205, Springer-Verlag, Berlin, Heidelberg, New York 1991.

    Google Scholar 

  29. Maria Emilia Alonso, Teo Mora, Mario Raimondo, Local decomposition algorithms, in: Shojiro Sakata, ed., Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-8), Lect. Notes Comput. Sci. 508, pp. 208–221, Springer-Verlag, Berlin, Heidelberg, New York 1991.

    Google Scholar 

  30. David Eisenbud, Craig Huneke, Wolmer V. Vasconcelos, Direct methods for primary decomposition, Invent. Math. 110 (1992), 207–235.

    Google Scholar 

  31. Ryutaroh Matsumoto, Computing the radical of an ideal in positive characteristic, J. Symb. Comput. 32 (2001), 263–271.

    Article  MathSciNet  MATH  Google Scholar 

  32. Elisabetta Fortuna, Patrizia Gianni, Barry Trager, Computation of the radical of polynomial ideals over fields of arbitrary characteristic, in: Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, pp. 116–120, ACM, New York 2001.

    Google Scholar 

  33. Gregor Kemper, The calculation of radical ideals in positive characteristic, J. Symb. Comput. 34 (2002), 229–238.

    Article  MathSciNet  MATH  Google Scholar 

  34. Santiago Laplagne, An algorithm for the computation of the radical of an ideal, in: ISSAC 2006, pp. 191–195, ACM, New York 2006.

    Google Scholar 

  35. Wolmer V. Vasconcelos, Computing the integral closure of an affine domain, Proc. Amer. Math. Soc. 113 (1991), 633–638.

    Google Scholar 

  36. Theo de Jong, An algorithm for computing the integral closure, J. Symb. Comput. 26 (1998), 273–277.

    Google Scholar 

  37. Wolfram Decker, Theo de Jong, Gert-Martin Greuel, Gerhard Pfister, The normalization: a new algorithm, implementation and comparisons, in: Computational methods for representations of groups and algebras (Essen, 1997), Progr. Math. 173, pp. 177–185, Birkhäuser, Basel 1999.

    Google Scholar 

  38. Anurag K. Singh, Irena Swanson, An algorithm for computing the integral closure, Algebra Number Theory 3 (2009), 587–595.

    Google Scholar 

  39. Gert-Martin Greuel, Santiago Laplagne, Frank Seelisch, Normalization of rings, J. Symbolic Comput. 45 (2010), 887–901.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derksen, H., Kemper, G. (2015). Constructive Ideal Theory. In: Computational Invariant Theory. Encyclopaedia of Mathematical Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48422-7_1

Download citation

Publish with us

Policies and ethics