Skip to main content

Abstract

This chapter provides necessary background information. Since cranes are the primary controlled machine in the book, an introduction to the types of cranes is discussed. Then, a brief historical overview of sliding mode control is considered. To review its history and the state-of-the-art research, a detailed overview of overhead crane control is presented. The chapter proceeds with some insights into bottleneck issues of control and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurrer KE (2008) The history of the theory of structures: from arch analysis to computational mechanics. Ernst & Sohn, Berlin

    Book  Google Scholar 

  2. Lancaster L (1999) Building Trajan’s column. Am J Archaeol 103(3):419–439

    Article  MathSciNet  Google Scholar 

  3. Vaughan J (2008) Dynamics and control of mobile cranes. Dissertation, Georgia Institute of Technology

    Google Scholar 

  4. Vaughan J, Kim D, Singhose W (2010) Control of tower cranes with double-pendulum payload dynamics. IEEE Trans Control Syst Technol 18(6):1345–1358

    Google Scholar 

  5. Utikin VI (1992) Sliding modes in control and optimization, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  6. Khalil HK, Grizzle JW (1996) Nonlinear systems. Prentice Hall, New Jersey

    Google Scholar 

  7. Edwards C, Spurgeon S (1998) Sliding mode control: theory and applications. CRC Press, Padstow

    MATH  Google Scholar 

  8. Bequette BW (2003) Process control: modeling, design, and simulation. Prentice Hall, New Jersey

    Google Scholar 

  9. Field JA (1961) The optimization of the performance of an ore bridge. Trans Eng Inst Canada 5(3):163–169

    Google Scholar 

  10. Manson GA (1982) Time-optimal control of an overhead crane model. Optim Control Appl Meth 3(2):115–120

    Article  MATH  Google Scholar 

  11. Kiniaghalam B, Homaifar A, Bikdash M, Dozier G (1999) Genetic algorithms solution for unconstrained optimal crane control. In: Proceedings of the congress on evolutionary computation, Washington, DC, USA, pp 2124–2130

    Google Scholar 

  12. Lee HH (2004) A new motion-planning scheme for overhead cranes with high-speed hoisting. J Dyn Syst Meas Control Trans ASME 126(2):359–364

    Article  Google Scholar 

  13. Lee HH (2005) Motion planning for three-dimensional overhead cranes with high-speed load hoisting. Int J Control 78(12):875–886

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee HH, Liang Y, Segura D (2006) A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting. J Dyn Syst Meas Control Trans ASME 128(4):842–845

    Article  Google Scholar 

  15. Ross IM, Fahroo F (2004) Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans Autom Control 49(8):1410–1413

    Article  MathSciNet  Google Scholar 

  16. Blajer W, Kolodziejczyk K (2007) Motion planning and control of gantry cranes in cluttered work environment. IET Control Theory Appl 1(5):1370–1379

    Article  Google Scholar 

  17. Kang SC, Miranda E (2008) Computational methods for coordinating multiple construction cranes. J Comput Civ Eng 22(4):252–263

    Article  Google Scholar 

  18. Zameroski D, Starr G, Wood J, Lumia R (2008) Rapid swing-free transport of non-linear payloads using dynamic programming. J Dyn Syst Meas Control Trans ASME 130(4). doi:10.1115/1.2936384

    Google Scholar 

  19. Da Cruz JJ, Leonardi F (2013) Minimum-time anti-swing motion planning of cranes using linear programming. Optim Control Appl Meth 34(2):191–201

    Article  MathSciNet  MATH  Google Scholar 

  20. AlBahnassi H, Hammad A (2012) Near real-time motion planning and simulation of cranes in construction: framework and system architecture. J Comput Civ Eng 26(1):54–63

    Article  Google Scholar 

  21. Sun N, Fang YC, Zhang YD, Ma BJ (2012) A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE ASME Trans Mechatron 17(1):166–173

    Article  Google Scholar 

  22. Sun N, Fang Y, Zhang X, Yuan Y (2012) Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory Appl 6(10):1410–1423

    Article  MathSciNet  Google Scholar 

  23. Singer N, Singhose W, Kriikku E (1997) An input shaping controller enabling cranes to move without sway. In: Proceedings of 7th topical meeting on robotics and remote systems, Augusta, GA, pp 225–231

    Google Scholar 

  24. Sorensen K, Singhose W, Dickerson S (2007) A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Eng Pract 15(7):825–837

    Article  Google Scholar 

  25. Parker GG, Petterson B, Dohrmann C, Robinett RD (1995) Command shaping for residual vibration free crane maneuvers. In: Proceedings of American control conference, Seattle, USA, pp 934–938

    Google Scholar 

  26. Jones S, Ulsoy AG (1999) An approach to control input shaping with application to coordinate measuring machines. J Dyn Syst Meas Control Trans ASME 121(2):242–247

    Article  Google Scholar 

  27. Khalid A, Huey J, Singhose W, Lawrence J, Frakes D (2006) Human operator performance testing using an input-shaped bridge crane. J Dyn Syst Meas Control Trans ASME 128(4):835–841

    Article  Google Scholar 

  28. Alsop CF, Forster GA, Holmes ER (1965) Ore unloader automation-A feasibility study. In: Proceedings of IFAC workshop on systems engineering for control systems, Tokyo, Japan, pp 295–305

    Google Scholar 

  29. Yamada S, Fujikawa H, Matsumoto K (1983) Suboptimal control of the roof crane by using the microcomputer. In: Proceedings of the annual conference on industrial electronics, San Francisco, USA, pp 323–328

    Google Scholar 

  30. Lin TC (1993) Design an input shaper to reduce operation-induced vibration. In: Proceedings of American control conference, San Francisco, USA, pp 2502–2506

    Google Scholar 

  31. Singhose W, Crain E, Seering W (1997) Convolved and simultaneous two-mode input shapers. IEE Proc Control Theory Appl 144(6):515–520

    Article  MATH  Google Scholar 

  32. French L, Singhouse W, Seering W (1999) An expert system for the design of input shapers. In: Proceedings of the 1999 IEEE international conference on control applications, Kohala Coast-Island, USA, pp 713–718

    Google Scholar 

  33. Singhose W, Mills B, Seering W (1999) Vibration reduction with specified-swing input shapers. In: Proceedings of the 1999 IEEE international conference on control applications, Kohala Coast-Island, USA, pp 533–538

    Google Scholar 

  34. Daqaq MF, Masoud ZN (2006) Nonlinear input-shaping controller for quay-side container cranes. Nonlinear Dyn 45(1–2):149–170

    Article  MathSciNet  MATH  Google Scholar 

  35. Masoud ZN, Daqaq MF (2006) A graphical approach to input-shaping control design for container cranes with hoist. IEEE Trans Control Syst Technol 14(6):1070–1077

    Article  Google Scholar 

  36. Sung YG, Singhose W (2009) Limited-state commands for systems with two flexible modes. Mechatronics 19(5):780–787

    Article  Google Scholar 

  37. Masoud Z, Alhazza K (2014) Frequency-modulation input shaping control of double-pendulum overhead cranes. J Dyn Syst Meas Control Trans ASME 136(2). doi:10.1115/1.4025796

    Google Scholar 

  38. Hazlerigg A (1972) Automatic control of crane operations. In: Abstracts of the IFAC 5th world congress, Paris, France, pp 11–13

    Google Scholar 

  39. Grassin N, Retz T, Caron B, Bourles H et al (1991) Robust control of a travelling crane. In: Proceedings of the 1st European control conference, Grenoble, France, pp 2196–2201

    Google Scholar 

  40. Lee HH (1997) Modelling and control of 2-dimensional overhead crane. In: Proceedings of the ASME dynamic systems and control division, Dallas, USA, pp 535–542

    Google Scholar 

  41. Nguyen HT (1994) State-variable feedback controller for an overhead crane. J Electr Electron Eng Aust 12:75–84

    Google Scholar 

  42. Yoon JS, Park BS, Lee JS, Park HS (1995) Various control schemes for implementation of the anti-swing crane. In: Proceedings of the ANS 6th topical meeting on robotics and remote systems, Monterey, USA, pp 472–479

    Google Scholar 

  43. Hamalainen JJ, Marttinen A, Baharova L, Virkkunen J (1995) Optimal path planning for a trolley crane: fast and smooth transfer of load. IEE Proc Control Theory Appl 142(1):51–57

    Article  MATH  Google Scholar 

  44. Olfati-Saber R (2001) Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Dissertation, Massachusetts Institute of Technology

    Google Scholar 

  45. Zhang X, Gao B, Chen H (2005) Nonlinear controller for a gantry crane based on partial feedback linearization. In: Proceedings of international conference on control and automation, Budapest, Hungary, pp 1074–1078

    Google Scholar 

  46. Tuan L, Janchiv A, Kim GH, Lee SG (2011) Feedback linearization control of overhead cranes with varying cable length. In: Proceedings of international conference on control, automation and systems, Gyeonggi-do, Korea, pp 906–911

    Google Scholar 

  47. Tuan L, Kim GH, Lee SG (2012) Partial feedback linearization control of the three dimensional overhead crane. In: Proceedings of IEEE international conference on automation science and engineering, Seoul, Korea, pp 1198–1203

    Google Scholar 

  48. Sun N, Fang YC (2013) A partially saturated nonlinear controller for overhead cranes with experimental implementation. In: Proceedings of IEEE international conference on robotics and automation, Karlsruhe, Germany, pp 4473–4478

    Google Scholar 

  49. Wu XQ, He XX, Sun N, Fang YC (2014) A novel anti-swing control method for 3-D overhead cranes. In: Proceedings of American control conference, Portland OR, USA, pp 2821–2826

    Google Scholar 

  50. Maschke B, Ortega R, Van der Schaft AJ (2000) Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans Autom Control 45(8):1498–1502

    Article  MathSciNet  MATH  Google Scholar 

  51. Karkoub MA, Zribi M (2002) Modelling and energy based nonlinear control of crane lifters. IEE Proc Control Theory Appl 149(3):209–216

    Article  Google Scholar 

  52. Sun N, Fang YC (2012) New energy analytical results for the regulation of underactuated overhead cranes: an end-effector motion-based approach. IEEE Trans Ind Electron 59(12):4723–4734

    Article  Google Scholar 

  53. Alli H, Singh I (1999) Passive control of overhead cranes. J Vib Control 5(3):443–459

    Article  Google Scholar 

  54. Guo W, Liu D, Yi J, Zhao D (2004) Passivity-based-control for double-pendulum-type overhead cranes. In: Proceedings of IEEE region 10 annual international conference, Chiang Mai, Thailand, pp 546–549

    Google Scholar 

  55. Collado J, Lozano R, Fantoni I (2000) Control of convey-crane based on passivity. In: Proceedings of American control conference, Chicago IL, USA, pp 1260–1264

    Google Scholar 

  56. Thull D, Wild D, Kugi A (2006) Application of a combined flatness- and passivity-based control concept to a crane with heavy chains and payload. In: Proceedings of IEEE international conference on control applications, Munich, Germany, pp 656–661

    Google Scholar 

  57. Fang Y, Dixon WE, Dawson DM, Zergeroglu E (2003) Nonlinear coupling control laws for an underactuated overhead crane system. IEEE ASME Trans Mechatron 8(3):418–423

    Article  Google Scholar 

  58. Liu Y, Yu HN (2013) A survey of underactuated mechanical systems. IET Control Theory Appl 7(7):921–935

    Article  MathSciNet  Google Scholar 

  59. Kokotovic PV (1992) The joy of feedback: nonlinear and adaptive. IEEE Control Syst Mag 12(3):7–17

    Article  MathSciNet  Google Scholar 

  60. Kokotovic PV, Krstic M, Kanellakopoulos I (1992) Backstepping to passivity: recursive design of adaptive systems. In: Proceedings of the 31st IEEE conference on decision and control, Tucson AZ, USA, pp 3276–3280

    Google Scholar 

  61. d’ Andréa-Novel B, Coron JM (2000) Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 36(4):587–593

    Article  MathSciNet  MATH  Google Scholar 

  62. Cao LZ, Wang HW, Niu C, Wei SB (2007) Adaptive backstepping control of crane hoisting system. In: Proceedings of IEEE international conference on automation and logistics, Qingdao, China, pp 245–248

    Google Scholar 

  63. Tsai CC, Wu HL, Chuang KH (2012) Backstepping aggregated sliding-mode motion control for automatic 3D overhead cranes. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, Kaohsiung, Taiwan, pp 849–854

    Google Scholar 

  64. Tsai CC, Wu HL, Chuang KH (2012) Intelligent sliding-mode motion control using fuzzy wavelet networks for automatic 3D overhead cranes. In: Proceedings of 51st annual conference of the society of instrument and control engineers of Japan, Akita, Japan, pp 1256–1261

    Google Scholar 

  65. Åström KJ, Wittenmark B (2013) Adaptive control. Courier Corporation, Chelmsford

    Google Scholar 

  66. Hurteau R, Desantis RM (1983) Microprocessor-based adaptive control of a crane system. In: Proceedings of the 22nd IEEE conference on decision and control, San Antonio TX, USA, pp 944–947

    Google Scholar 

  67. Butler H, Honderd G, van Amerongen J (1991) Model reference adaptive control of a gantry crane scale model. IEEE Control Syst Mag 11(1):57–62

    Article  MATH  Google Scholar 

  68. d’Andrea-Novel B, Boustany F (1991) Adaptive control of a class of mechanical systems using linearization and Lyapunov methods: a comparative study on the overhead crane example. In: Proceedings of the 30th IEEE conference on decision and control, Brighton, England, pp 120–125

    Google Scholar 

  69. Boustany F, d’Andrea-Novel B (1992) Adaptive control of an overhead crane using dynamic feedback linearization and estimation design. In: Proceedings of 1992 IEEE international conference on robotics and automation, Nice, France, pp 1963–1968

    Google Scholar 

  70. Yang JH, Yang KS (2006) Adaptive control for 3-D overhead crane systems. In: Proceedings of American control conference, Minneapolis MN, USA, pp 1832–1837

    Google Scholar 

  71. Messineo S, Serrani A (2008) Offshore crane control based on adaptive external models. In: Proceedings of American control conference, Seattle WA, USA, pp 2498–2503

    Google Scholar 

  72. Sun N, Fang Y, Chen H (2014) Adaptive control of underactuated crane systems subject to bridge length limitation and parametric uncertainties. In: Proceedings of the 33rd Chinese control conference, Nanjing, China, pp 3568–3573

    Google Scholar 

  73. He W, Zhang S, Ge SS (2014) Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans Ind Electron 61(8):4126–4133

    Article  Google Scholar 

  74. Ngo QH, Hong KS (2012) Adaptive sliding mode control of container cranes. IET Control Theory Appl 6(5):662–668

    Google Scholar 

  75. Fang Y, Ma B, Wang P, Zhang X (2012) A motion planning-based adaptive control method for an underactuated crane system. IEEE Trans Control Syst Technol 20(1):241–248

    Google Scholar 

  76. Liu D, Yi J, Zhao D, Wang W (2005) Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics 15(5):505–522

    Article  Google Scholar 

  77. Yang JH, Yang KS (2007) Adaptive coupling control for overhead crane systems. Mechatronics 17(2):143–152

    Google Scholar 

  78. Yu W, Moreno-Armendariz MA, Rodriguez FO (2011) Stable adaptive compensation with fuzzy CMAC for an overhead crane. Inf Sci 181(21):4895–4907

    Article  MathSciNet  MATH  Google Scholar 

  79. Zhou KM, Doyle CJ (1999) Essentials of robust control. Prentice Hall, New Jersey

    MATH  Google Scholar 

  80. Ackermann J (1980) Parameter space design of robust control systems. IEEE Trans Autom Control 25(6):1058–1072

    Article  MATH  Google Scholar 

  81. Kar IN, Seto K, Doi F (2000) Multimode vibration control of a flexible structure using H∞-based robust control. IEEE ASME Trans Mechatron 5(1):23–31

    Google Scholar 

  82. Yang TW, O’Connor WJ (2006) Wave based robust control of a crane system. In: Proceedings of 2006 IEEE/RSJ international conference on intelligent robots and systems, Beijing, China, pp 2724–2729

    Google Scholar 

  83. Uchiyama N, Takagi S, Sano S (2006) Robust control of rotary cranes based on pole placement approach. In: Proceedings of the 9th IEEE international workshop on advanced motion control, Istanbul, Turkey, pp 647–652

    Google Scholar 

  84. Toda M (2007) A unified approach to robust control of flexible mechanical systems. In: Proceedings of the 46th IEEE conference on decision and control, New Orleans LA, USA, pp 5787–5793

    Google Scholar 

  85. Uchiyama N (2009) Robust control of rotary crane by partial-state feedback with integrator. Mechatronics 19(8):1294–1302

    Article  Google Scholar 

  86. Wen SJ, Deng MC, Ohno Y, Wang DY (2011) Operator-based robust right coprime factorization design for planar gantry crane. In: Proceedings of 2010 international conference on mechatronics and automation, Xi’an, China, pp 1–5

    Google Scholar 

  87. Wen SJ, Deng MC, Wang DY (2011) Operator-based robust nonlinear control for a crane system with constraint inputs. In: Proceedings of the 30th Chinese control conference, Yantai, China, pp 6109–6114

    Google Scholar 

  88. Wen SJ, Deng MD, Inoue A (2012) Operator-based robust non-linear control for gantry crane system with soft measurement of swing angle. Int J Model Ident Control 16(1):86–96

    Article  Google Scholar 

  89. Sano S, Ouyang H, Uchiyama N (2012) Robust control of rotary cranes under rope length variance via LMI optimization. In: Proceedings of 2012 IEEE international conference on industrial technology, Busan, Korea, pp 846–851

    Google Scholar 

  90. Ushida Y, Narita M, Ushiro T, Chen G, Takami I (2014) Robust control for crane considering all varying parameters in the dynamics. In: Proceedings of the 11th IEEE international conference on control and automation, Taichung, Taiwan, pp 785–790

    Google Scholar 

  91. Camacho EF, Bordons C (2004) Model predictive control. Springer, Berlin

    MATH  Google Scholar 

  92. Kimiaghalam B, Homaifar A, Sayarrodsari, B (2001) An application of model predictive control for a shipboard crane. In: Proceedings of American control conference, Arlington VA, USA, pp 929–934

    Google Scholar 

  93. Deng JM, Becerra VM (2004) Application of constrained predictive control on a 3D crane system. In: Proceedings of IEEE conference on robotics, automation and mechatronics, Singapore, pp 583–587

    Google Scholar 

  94. Arnold E, Sawodny O, Neupert J, Schneider K (2005) Anti-sway system for boom cranes based on a model predictive control approach. In: Proceedings of IEEE international conference on mechatronics and automation, Niagara Falls, Canada, pp 1533–1538

    Google Scholar 

  95. Van den Broeck L, Diehl M, Swevers J (2011) A model predictive control approach for time optimal point-to-point motion control. Mechatronics 21(7):1203–1212

    Article  Google Scholar 

  96. Kapernick B, Graichen K (2013) Model predictive control of an overhead crane using constraint substitution. In: Proceedings of American control conference, Washington DC, USA, pp 3973–3978

    Google Scholar 

  97. Schaper U, Arnold E, Sawodny O, Schneider K (2013) Constrained real-time model-predictive reference trajectory planning for rotary cranes. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, Wollongong, Australia, pp 680–685

    Google Scholar 

  98. Bauer D, Schaper U, Schneider K, Sawodny O (2014) Observer design and flat-ness-based feedforward control with model predictive trajectory planning of a crane rotator. In: Proceedings of American control conference, Portland OR, USA, pp 4020–4025

    Google Scholar 

  99. Barisa T, Bartulovic M, Zuzic G, Iles S, Matusko J, Kolonic F (2014) Nonlinear predictive control of a tower crane using reference shaping approach. In: Proceedings of the 16th international power electronics and motion control conference and exposition, Antalya, Turkey, pp 872–876

    Google Scholar 

  100. Iles S, Matusko J, Kolonic F (2014) Real-time predictive control of 3D tower crane. In: Proceedings of IEEE 23rd international symposium on industrial electronics, Istanbul, Turkey, pp 224–230

    Google Scholar 

  101. Khatamianfar A, Savkin AV (2014) A new tracking control approach for 3D over-head crane systems using model predictive control. In: Proceedings of European control conference, Strasbourg, France, pp 796–801

    Google Scholar 

  102. Bock M, Kugi A (2014) Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Trans Control Syst Technol 22(4):1461–1473

    Article  Google Scholar 

  103. Stengel RF (1991) Intelligent failure tolerant control. IEEE Control Syst Mag 11(4):14–23

    Article  Google Scholar 

  104. Antsaklis PJ, Passino KM (1993) An introduction to intelligent and autonomous control. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  105. Michels K, Klawonn F, Kruse R, Numberger A (2006) Fuzzy control: fundamentals, stability and design of fuzzy controllers. Springer, New York

    MATH  Google Scholar 

  106. Takeuchi S, Fujikawa H, Yamada S (1988) The application of fuzzy theory for a rotary crane control. In: Proceedings of the 14th annual conference of IEEE industrial electronics society, Singapore, pp 415–420

    Google Scholar 

  107. Yamada S, Fujikawa H, Takeuchi O, Wakasugi Y (1989) Fuzzy control of the roof crane. In: Proceedings of the 15th annual conference of IEEE industrial electronics society, Philadelphia PA, USA, pp 709–714

    Google Scholar 

  108. Suzuki Y, Yamada S, Fujikawa H (1993) Anti-swing control of the container crane by fuzzy control. In: Proceedings of international conference on industrial electronics, control, and instrumentation, Maui HI, USA, pp 230–235

    Google Scholar 

  109. Itoh O, Migita H, Itoh J, Irie Y (1993) Application of fuzzy control to automatic crane operation. In: Proceedings of international conference on industrial electronics, control, and instrumentation, Maui HI, USA, pp 161–164

    Google Scholar 

  110. Nowacki Z, Owczarz D, Wozniak P (1996) On the robustness of fuzzy control of an overhead crane. In: Proceedings of the IEEE international symposium on industrial electronics, Warsaw, Japan, pp 433–437

    Google Scholar 

  111. Yi J, Yubazaki N, Hirota K (2002) Anti-swing fuzzy control of overhead traveling crane. In: Proceedings of the 2002 IEEE international conference on fuzzy systems, Honolulu HI, USA, pp 1298–1303

    Google Scholar 

  112. Kijima Y, Ohtsubo R, Yamada S, Fujikawa H (1995) An optimization of fuzzy controller and its application to overhead crane. In: Proceedings of international conference on industrial electronics, control, and instrumentation, Orlando FL, USA, pp 1508–1513

    Google Scholar 

  113. Benhidjeb A, Gissinger GL (1995) Fuzzy control of an overhead crane performance comparison with classic control. Control Eng Pract 3(12):1687–1696

    Article  Google Scholar 

  114. Al-Humaidi HM, Hadipriono Tan F (2009) Mobile crane safe operation approach to prevent electrocution using fuzzy-set logic models. Adv Eng Softw 40(8):686–696

    Article  MATH  Google Scholar 

  115. Chen YJ, Wang WJ, Chang CL (2009) Guaranteed cost control for an overhead crane with practical constraints: Fuzzy descriptor system approach. Eng Appl Artif Intell 22:639–645

    Article  Google Scholar 

  116. Smoczek J, Szpytko J (2014) Evolutionary algorithm-based design of a fuzzy TBF predictive model and TSK fuzzy anti-sway crane control system. Eng Appl Artif Intell 28:190–200

    Article  Google Scholar 

  117. Precup RE, Filip HI, Rădac MB et al (2014) Online identification of evolving Takagi–Sugeno–Kang fuzzy models for crane systems. Appl Soft Comput J 24:1155–1163

    Article  Google Scholar 

  118. Liu D, Yi J, Tan M (2002) Proposal of GA-based two-stage fuzzy control of over-head crane. In: Proceedings of 2002 IEEE region 10 conference on computer, communications, control and power engineering, Beijing, China, pp 1721–1724

    Google Scholar 

  119. Petrenko YN, Alavi SE (2010) Fuzzy logic and genetic algorithm technique for non-liner system of overhead crane. In: Proceedings of 2010 IEEE region 8 international conference on computational technologies in electrical and electronics engineering, Irkutsk Listvyanka, Russia, pp 848–851

    Google Scholar 

  120. Adeli M, Zarabadi SH, Zarabadipour H, Aliyari Shoorehdeli M (2011) Design of a parallel distributed fuzzy LQR controller for double-pendulum-type overhead cranes. In: Proceedings of IEEE international conference on control system, computing and engineering, Penang, Malaysia, pp 62–67

    Google Scholar 

  121. Adeli M, Zarabadipour H, Zarabadi SH, Aliyari Shoorehdeli M (2011) Anti-swing control for a double-pendulum-type overhead crane via parallel distributed fuzzy LQR controller combined with genetic fuzzy rule set selection. In: Proceedings of IEEE international conference on control system, computing and engineering, Penang, Malaysia, pp 306–311

    Google Scholar 

  122. Adeli M, Zarabadipour H, Shoorehdeli MA (2011) Crane control via parallel distributed fuzzy LQR controller using genetic fuzzy rule selection. In: Proceedings of international conference on control, instrumentation and automation, Shiraz, Iran, pp 390–395

    Google Scholar 

  123. Adeli M, Zarabadipour H, Shoorehdeli MA (2011) Anti-swing control of a double-pendulum-type overhead crane using parallel distributed fuzzy LQR controller. In: Proceeding of international conference on control, instrumentation and automation, Shiraz, Iran, pp 401–406

    Google Scholar 

  124. Solihin MI, Wahyudi (2007) Fuzzy-tuned PID control design for automatic gantry crane. In: Proceedings of 2007 international conference on intelligent and advanced systems, Kuala Lumpur, Malaysia, pp 1092–1097

    Google Scholar 

  125. Yang Y (2008) Fuzzy-PI damping control for hydraulic crane tip. In: Proceedings of 5th international conference on fuzzy systems and knowledge discovery, Jinan, China, pp 75–79

    Google Scholar 

  126. Lin F, Zhang X, Zhai X, Huang H (2011) The application study of heave compensation control based on motion prediction and fuzzy-PID for intelligence crane. In: Proceedings of international conference on mechatronics and automation, Beijing, China, pp 2370–2374

    Google Scholar 

  127. Liu C, Zhao H, Cui Y (2014) Research on application of fuzzy adaptive PID controller in bridge crane control system. In: Proceedings of IEEE international conference on software engineering and service science, Beijing, China, pp 971–974

    Google Scholar 

  128. Chang CY (2007) Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Trans Ind Inf 3(2):164–172

    Article  Google Scholar 

  129. Park MS, Chwa D, Hong SK (2007) Adaptive fuzzy nonlinear anti-sway trajectory tracking control of uncertain overhead cranes with high-speed load hoisting motion. In: Proceedings of international conference on control, automation and systems, Seoul, South Korea, pp 2886–2891

    Google Scholar 

  130. Pal AK, Mudi RK (2012) An adaptive fuzzy controller for overhead crane. In: Proceedings of IEEE international conference on advanced communication control and computing technologies, Ramanathapuram, India, pp 300–304

    Google Scholar 

  131. Smoczek J, Szpytko J (2013) Fuzzy logic-based adaptive control system prototypying for laboratory scaled overhead crane. In: Proceedings of 18th international conference on methods and models in automation and robotics, Międzyzdroje, Poland, pp 92–97

    Google Scholar 

  132. Smoczek J, Szpytko J (2012) Design of gain scheduling anti-sway crane controller using genetic fuzzy system. In: Proceedings of 17th international conference on methods and models in automation and robotics, pp 573–578

    Google Scholar 

  133. Sharkawy AB, Moustafa K, El-Awady H et al (2014) Control of overhead crane based on Lyapunov approach to fuzzy controller synthesis. In: Proceedings of 23rd international conference on robotics in Alpe-Adria-Danube region, Smolenice Castle, Slovakia, pp 1–6

    Google Scholar 

  134. Smoczek J, Szpytko J (2014) Iterative and evolutionary optimization for interval analysis-based designing a fuzzy controller for a planar crane model. In: Proceedings of 19th international conference on methods and models in automation and robotics, Międzyzdroje, Poland, pp 258–263

    Google Scholar 

  135. Pieper JK, Surgenor BW (1994) Discrete time sliding mode control applied to a gantry crane. In: Proceedings of 33rd IEEE conference on decision and control, Lake Buena Vista FL, USA, pp 829–834

    Google Scholar 

  136. Pieper JK, Surgenor BW (1994) Discrete time sliding mode control applied to a gantry crane. In: Proceedings of 33rd IEEE conference on decision and control, Lake Buena Vista FL, USA, pp 829–834

    Google Scholar 

  137. Bartolini G, Orani N, Pisano A, Usai E (2000) Load swing damping in overhead cranes by sliding mode technique. In: Proceedings of 39th IEEE conference on decision and control, Sydney, Australia, pp 1697–1702

    Google Scholar 

  138. Bartolini G, Pisano A, Usai E (2002) Second-order sliding-mode control of container cranes. Automatica 38(10):1783–1790

    Article  MathSciNet  MATH  Google Scholar 

  139. Vazquez C, Collado J, Fridman L (2012) On the second order sliding mode control of a parametrically excited overhead-crane. In: Proceedings of American control conference, Montréal, Canada, pp 6288–6293

    Google Scholar 

  140. Vazquez C, Fridman L, Collado J (2013) Second order sliding mode control of an overhead-crane in the presence of external perturbations. In: Proceedings of IEEE 52nd annual conference on decision and control, Florence, Italy, pp 2876–2880

    Google Scholar 

  141. Vazquez C, Aranovskiy S, Freidovich L, Fridman L (2014) Second order sliding mode control of a mobile hydraulic crane. In: Proceedings of IEEE 53rd annual conference on decision and control, Los Angeles CA, USA, pp 5530–5535

    Google Scholar 

  142. Chen WT, Saif M (2008) Output feedback controller design for a class of MIMO nonlinear systems using high-order sliding-mode differentiators with application to a laboratory 3-D crane. IEEE Trans Ind Electron 55(11):3985–3997

    Article  Google Scholar 

  143. Dong Y, Wang Z, Feng Z, Cheng J (2008) Incremental sliding mode control for double-pendulum-type overhead crane system. In: Proceedings of 27th Chinese control conference, Kunming, China, pp 368–371

    Google Scholar 

  144. Cao L, Li XB, Lou FP, et al (2010) Controller design and simulation of the crane based on non-singular terminal sliding mode method. In: Proceedings of international conference on logistics systems and intelligent management, Harbin, China, pp 484–487

    Google Scholar 

  145. Defoort M, Maneeratanaporn J, Murakami T (2012) Integral sliding mode anti-sway control of an underactuated overhead crane system. In: Proceedings of 9th France-Japan and 7th Europe-Asia congress on mechatronics and research and education in mechatronics, Paris, France, pp 71–77

    Google Scholar 

  146. Xi Z, Hesketh T (2010) Discrete time integral sliding mode control for overhead crane with uncertainties. IET Control Theory Appl 4(10):2071–2081

    Article  MathSciNet  Google Scholar 

  147. Tuan LA, Lee SG (2013) Sliding mode controls of double-pendulum crane systems. J Mech Sci Technol 27(6):1863–1873

    Article  Google Scholar 

  148. Chang CY, Hsu KC, Chiang KH, Huang GE (2006) An enhanced adaptive sliding mode fuzzy control for positioning and anti-swing control of the overhead crane system. In: Proceedings of IEEE international conference on systems, man and cybernetics, Taipei, Taiwan, pp 992–997

    Google Scholar 

  149. Liu DT, Yi JQ, Zhao DB (2003) Fuzzy tuning sliding mode control of transporting for an overhead crane. In: Proceedings of international conference on machine learning and cybernetics, Xi’an, China, pp 2541–2546

    Google Scholar 

  150. Liu DT, Yi JQ, Zhao DB, Wang W (2004) Swing-free transporting of two-dimensional overhead crane using sliding mode fuzzy control. In: Proceedings of American control conference, Boston MA, USA, pp 1764–1769

    Google Scholar 

  151. Sun H, Chen ZM, Meng WJ (2012) Fuzzy sliding mode anti-swing control for tower crane base on time-delayed filter. In: Proceedings of 24th Chinese control and decision conference, Taiyuan, China, pp 2205–2210

    Google Scholar 

  152. Liu R, Li S, Chen X (2013) An optimal integral sliding mode control design based on pseudospectral method for overhead crane systems: In: Proceedings of 32nd Chinese control conference, Xi’an, China, pp 2195–2200

    Google Scholar 

  153. Liu R, Li S (2014) Suboptimal integral sliding mode controller design for a class of affine systems. J Optim Theory Appl 161(3):877–904

    Article  MathSciNet  MATH  Google Scholar 

  154. Wang W, Yi JQ, Zhao DB, Liu XJ (2004) Incremental neural network sliding mode controller for an overhead crane. In: Proceedings of international conference on intelligent mechatronics and automation, Chengdu, China, pp 166–171

    Google Scholar 

  155. Tsai CC, Wu HL, Chuang KH (2012) Intelligent sliding-mode motion control using fuzzy wavelet networks for automatic 3D overhead cranes. In: Proceedings of 51st annual conference of the society of instrument and control engineers of Japan, Akita, Japan, pp 1256–1261

    Google Scholar 

  156. Tuan LA, Moon SC, Kim DH, Lee SG (2012) Adaptive sliding mode control of three dimensional overhead cranes. In: Proceedings of IEEE international conference on cyber technology in automation, control, and intelligent systems, Bangkok, Thailand, pp 354–359

    Google Scholar 

  157. Tuan LA, Moon SC, Lee WG, Lee SG (2013) Adaptive sliding mode control of overhead cranes with varying cable length. J Mech Sci Technol 27(3):885–893

    Article  Google Scholar 

  158. Qian DW, Tong SW, Yi JQ (2013) Adaptive control based on incremental hierarchical sliding mode for overhead crane systems. Appl Math Inform Sci 7(4):1359–1364

    Article  MathSciNet  Google Scholar 

  159. Tuan LA, Lee SG, Nho LC, Kim DH (2013) Model reference adaptive sliding mode control for three dimensional overhead cranes. Int J Precis Eng Manuf 14(8):1329–1338

    Article  Google Scholar 

  160. Park MS, Chwa D, Eom M (2014) Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion. IEEE Trans Fuzzy Syst 22(5):1262–1271

    Article  Google Scholar 

  161. Dhahri S, Hmida FB, Sellami A, Gossa M (2009) Actuator fault reconstruction for linear uncertain systems using sliding mode observer. In: Proceedings of 3rd international conference on signals, circuits and systems, Medenine, Tunisia, pp 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianwei Qian .

Appendices

Appendices

1.1.1 A Matlab Codes to Plot Fig. 1.5a

1.1.2 B Matlab Codes to Plot Fig. 1.5b

1.1.3 C Matlab Codes to Plot Fig. 1.7

1.1.4 D Simulink Model to Plot Figs. 1.8 and 1.9

1.1.5 E Simulink Model to Plot Figs. 1.10 and 1.11

1.1.6 F Matlab Codes to Plot Fig. 1.12

1.1.7 G Simulink Model to Plot Figs. 1.13 and 1.14

1.1.8 H Simulink Model to Plot Figs. 1.15 and 1.16

1.1.9 I Simulink Model to Plot Figs. 1.17, 1.18, 1.19 and 1.20

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qian, D., Yi, J. (2016). Introduction. In: Hierarchical Sliding Mode Control for Under-actuated Cranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48417-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48417-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48415-9

  • Online ISBN: 978-3-662-48417-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics