Skip to main content

The 0-1 Test for Chaos: A Review

  • Chapter
  • First Online:
Chaos Detection and Predictability

Part of the book series: Lecture Notes in Physics ((LNP,volume 915))

Abstract

We review here theoretical as well as practical aspects of the 0-1 test for chaos for deterministic dynamical systems. The test is designed to distinguish between regular, i.e. periodic or quasi-periodic, dynamics and chaotic dynamics. It works directly with the time series and does not require any phase space reconstruction. This makes the test suitable for the analysis of discrete maps, ordinary differential equations, delay differential equations, partial differential equations and real world time series. To illustrate the range of applicability we apply the test to examples of discrete dynamics such as the logistic map, Pomeau–Manneville intermittency maps with both summable and nonsummable autocorrelation functions, and the Hamiltonian standard map exhibiting weak chaos. We also consider examples of continuous time dynamics such as the Lorenz-96 system and a driven and damped nonlinear Schrödinger equation. Finally, we show the applicability of the 0-1 test for time series contaminated with noise as found in real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One may either use off the shelf routines provided for example in Numerical Recipes [61] or build-in routines in MATLAB [49].

  2. 2.

    One may use e 2π i j ωn rather than e ij ω for a rescaled domain.

References

  1. Ashwin, P., Melbourne, I., Nicol, M.: Hypermeander of spirals; local bifurcations and statistical properties. Physica D 156, 364–382 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bernardini, D., Rega, G., Litak, G., Syta, A.: Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0–1 test. Proc. Inst. Mech. Eng. K: J. Multi-body Dyn. 227(1), 17–22 (2013)

    Google Scholar 

  3. Cafagna, D., Grassi, G.: An effective method for detecting chaos in fractional-order systems. Int. J. Bifurcat. Chaos 20(3), 669–678 (2010)

    Article  MATH  Google Scholar 

  4. Cai, D., McLaughlin, D.W.: Chaotic and turbulent behaviour of unstable one-dimensional nonlinear dispersive waves. J. Math. Phys. 41(6), 4125–4153 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Cao, J., Syta, A., Litak, G., Zhou, S., Inman, D., Chen, Y.: Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur. Phys. J. Plus 130(6) (2015)

    Google Scholar 

  6. Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chowdhury, D.R., Iyengar, A.N.S., Lahiri, S.: Gottwald Melborune (0–1) test for chaos in a plasma. Nonlinear Process. Geophys. 19(1), 53–56 (2012)

    Article  ADS  Google Scholar 

  8. Dafilis, M., Frascoli, F., McVernon, J., Heffernan, J.M., McCaw, J.M.: The dynamical consequences of seasonal forcing, immune boosting and demographic change in a model of disease transmission. J. Theor. Biol. 361, 124–132 (2014)

    Article  MATH  Google Scholar 

  9. Dafilis, M., Frascoli, F., McVernon, J., Heffernan, J., McCaw, J.: Dynamical crises, multistability and the influence of the duration of immunity in a seasonally-forced model of disease transmission. Theor. Biol. Med. Model. 11(1), 43 (2014)

    Article  MATH  Google Scholar 

  10. Diddens, C., Linz, S.J.: Continuum modeling of particle redeposition during ion-beam erosion. Eur. Phys. J. B 86(9), 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  11. Eickermann, T., Grauer, R., Spatschek, K.H.: Identification of mass capturing structures in a perturbed nonlinear Schrödinger equation. Phys. Lett. A 198, 383–388 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Erzgräber, H., Wieczorek, S., Krauskopf, B.: Dynamics of two semiconductor lasers coupled by a passive resonator. Phys. Rev. E 81, 056201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. Falconer, I., Gottwald, G.A., Melbourne, I., Wormnes, K.: Application of the 0–1 Test for chaos to experimental data. SIAM J. Appl. Dyn. 6, 395–402 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Field, M., Melbourne, I., Török, A.: Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theor. Dyn. Syst. 23, 87–110 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Field, M., Melbourne, I., Török, A.: Stable ergodicity for smooth compact Lie group extensions of hyperbolic basic sets. Ergodic Theor. Dyn. Syst. 25, 517–551 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Gaspard, P., Wang, X.-J.: Sporadicity: between periodic and chaotic dynamical behaviours. Proc. Natl. Acad. Sci. USA 85, 4591–4595 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Gopal, R., Venkatesan, A., Lakshmanan, M.: Applicability of 0–1 test for strange nonchaotic attractors. Interdiscip. J. Nonlinear Sci. 23(2), 023123 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. A 460, 603–611 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Gottwald, G.A., Melbourne, I.: Testing for chaos in deterministic systems with noise. Physica D 212(1–2), 100–110 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Gottwald, G.A., Melbourne, I.: Comment on “Reliability of the 0–1 test for chaos”. Phys. Rev. E 77, 028201 (2008)

    Article  ADS  Google Scholar 

  22. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. 8, 129–145 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Gottwald, G.A., Melbourne, I.: On the validity of the 0–1 test for chaos. Nonlinearity 22, 1367–1382 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Gottwald, G.A., Melbourne, I.: A Huygens principle for diffusion and anomalous diffusion in spatially extended systems. Proc. Natl. Acad. Sci. USA 110, 8411–8416 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Gottwald, G.A., Melbourne, I.: Central limit theorems and suppression of anomalous diffusion for systems with symmetry (2013, submitted)

    Google Scholar 

  26. Gottwald, G.A., Melbourne, I.: A test for a conjecture on the nature of attractors for smooth dynamical systems. Chaos 24, 024403 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theor. Relat. Fields 128, 82–122 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. He, K., Xu, Y., Zou, Y., Tang, L.: Electricity price forecasts using a Curvelet denoising based approach. Phys. A Stat. Mech. Appl. 425, 1–9 (2015)

    Article  Google Scholar 

  29. Howard, J.: Discrete virial theorem. Celest. Mech. Dyn. Astron. 92(1–3), 219–241 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Hu, H.: Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergodic Theor. Dyn. Syst. 24, 495–524 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  32. Kȩdra, M.: Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains). J. Hydrol. 509, 474–503 (2014)

    Article  Google Scholar 

  33. Krese, B., Govekar, E.: Nonlinear analysis of laser droplet generation by means of 0–1 test for chaos. Nonlinear Dyn. 67, 2101–2109 (2012)

    Article  Google Scholar 

  34. Krese, B., Govekar, E.: Analysis of traffic dynamics on a ring road-based transportation network by means of 0–1 test for chaos and Lyapunov spectrum. Transp. Res. Part C Emerg. Technol. 36, 27–34 (2013)

    Article  Google Scholar 

  35. Kulp, C.W., Smith, S.: Characterization of noisy symbolic time series. Phys. Rev. E 83, 026201 (2011)

    Article  ADS  Google Scholar 

  36. Kříž, R.: Chaotic analysis of the GDP time series. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Advances in Intelligent Systems and Computing, vol. 210, pp. 353–362. Springer International Publishing, Berlin (2013)

    Google Scholar 

  37. Kříž, R.: Finding chaos in finnish gdp. Int. J. Autom. Comput. 11(3), 231–240 (2014)

    Article  Google Scholar 

  38. Kříž, R., Kratochvǐl, Š.: Analyses of the chaotic behavior of the electricity price series. In: Sanayei, A., Zelinka, I., Rössler, O.E. (eds.) ISCS 2013: Interdisciplinary Symposium on Complex Systems. Emergence, Complexity and Computation, vol. 8, pp. 215–226. Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  39. Leon, F.: Design and evaluation of a multiagent interaction protocol generating behaviours with different levels of complexity. Neurocomputing 146, 173–186 (2014)

    Article  Google Scholar 

  40. Li, X., Gao, G., Hu, T., Ma, H., Li, T.: Multiple time scales analysis of runoff series based on the Chaos theory. Desalin. Water Treat. 52(13–15), 2741–2749 (2015)

    Google Scholar 

  41. Lichtenberg, A., Lieberman, M.: Regular and Chaotic Dynamics. Applied Mathematical Sciences. Springer, New York (1992)

    Book  MATH  Google Scholar 

  42. Litak, G., Syta, A., Wiercigroch, M.: Identification of chaos in a cutting process by the 0-1 test. Chaos Solitons Fractals 40, 2095–2101 (2009)

    Article  ADS  Google Scholar 

  43. Litak, G., Radons, G., Schubert, S.: Identification of chaos in a regenerative cutting process by the 0-1 test. Proc. Appl. Math. Mech. 9(1), 299–300 (2009)

    Article  Google Scholar 

  44. Liverani, C., Saussol, B., Vaienti, S.: A probabilistic approach to intermittency. Ergodic Theor. Dyn. Syst. 19, 671–685 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lorenz, E.N.: Predictability - a problem partly solved. In: Palmer, T. (ed.) Predictability. European Centre for Medium-Range Weather Forecast, Shinfield Park, Reading (1996)

    Google Scholar 

  46. Lorenz, E.N., Emanuel, K.A.: Optimal sites for supplementary weather observations: simulation with a small model. J. Atmos. Sci. 55(3), 399–414 (1998)

    Article  ADS  Google Scholar 

  47. Lugo-Fernández, A.: Is the loop current a chaotic oscillator? J. Phys. Oceanogr. 37(6), 1455–1469 (2007)

    Article  ADS  Google Scholar 

  48. Martinsen-Burrell, N., Julien, K., Petersen, M.R., Weiss, J.B.: Merger and alignment in a reduced model for three-dimensional quasigeostrophic ellipsoidal vortices. Phys. Fluids 18, 057101 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick, MA (2010)

    Google Scholar 

  50. McLennan-Smith, T.A., Mercer, G.N.: Complex behaviour in a dengue model with a seasonally varying vector population. Math. Biosci. 248, 22–30 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  51. Melbourne, I., Gottwald, G.A.: Power spectra for deterministic chaotic dynamical systems. Nonlinearity 21, 179–189 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Melbourne, I., Nicol, M.: Statistical properties of endomorphisms and compact group extensions. J. Lond. Math. Soc. 70, 427–446 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  53. Melbourne, I., Török, A.: Statistical limit theorems for suspension flows. Israel J. Math. 144, 191–209 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  54. Melbourne, I., Zweimüller, R.: Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems. Ann. Inst. H. Poincaré (B) Probab. Stat. 51, 545–556 (2015)

    Google Scholar 

  55. Nair, V., Sujith, R.: A reduced-order model for the onset of combustion instability: physical mechanisms for intermittency and precursors. Proc. Combust. Inst. 35(3), 3193–3200 (2015)

    Article  Google Scholar 

  56. Nicol, M., Melbourne, I., Ashwin, P.: Euclidean extensions for dynamical systems. Nonlinearity 14, 275–300 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Nozaki, K., Bekki, N.: Low-dimensional chaos in a driven damped nonlinear Schrödinger equation. Physica D 21, 381–393 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Orrell, D., Smith, L.: Visualising bifurcations in high dimensional systems: the spectral bifurcation diagram. Int. J. Bifurcat. Chaos 13(10), 3015–3028 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  60. Prabin Devi, S., Singh, S.B., Surjalal Sharma, A.: Deterministic dynamics of the magnetosphere: results of the 0-1 test. Nonlinear Process. Geophys. 20(1), 11–18 (2013)

    Google Scholar 

  61. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  62. Radons, G., Zienert, A.: Nonlinear dynamics of complex hysteretic systems: oscillator in a magnetic field. Eur. Phys. J. Spec. Top. 222(7), 1675–1684 (2013)

    Article  Google Scholar 

  63. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Rössler, O.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  ADS  Google Scholar 

  65. Swathy, P.S., Thamilmaran, K.: Dynamics of SC-CNN based variant of MLC circuit: an experimental study. Int. J. Bifurcat. Chaos 24(02), 1430008 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  66. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980 (Coventry 1979/1980). Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  67. Tsai, T.-L., Dawes, J.H.: Dynamics near a periodically-perturbed robust heteroclinic cycle. Physica D 262, 14–34 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Webel, K.: Chaos in German stock returns - new evidence from the 0–1 test. Econ. Lett. 115(3), 487–489 (2012)

    Article  Google Scholar 

  69. Xin, B., Li, Y.: 0-1 test for chaos in a fractional order financial system with investment incentive. Abstr. Appl. Anal. 2013, 876298 (2013)

    Google Scholar 

  70. Xin, B., Zhang, J.: Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn. 79(2), 1399–1409 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  71. Yuan, L., Yang, Q., Zeng, C.: Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn. 73(1–2), 439–448 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  72. Zachilas, L., Psarianos, I.N.: Examining the chaotic behavior in dynamical systems by means of the 0–1 test. J. Appl. Math. 2012, 681296 (2012)

    Google Scholar 

  73. Zaslavskii, G.M., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A., Sagdeev, A.R.: Chaos and Quasi-Regular Patterns. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  74. Zweimüller, R.: Stable limits for probability preserving maps with indifferent fixed points. Stoch. Dyn. 3, 83–99 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

GAG acknowledges support from the Australian Research Council. The research of IM was supported in part by the European Advanced Grant StochExtHomog (ERC AdG 320977).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg A. Gottwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gottwald, G.A., Melbourne, I. (2016). The 0-1 Test for Chaos: A Review. In: Skokos, C., Gottwald, G., Laskar, J. (eds) Chaos Detection and Predictability. Lecture Notes in Physics, vol 915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48410-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48410-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48408-1

  • Online ISBN: 978-3-662-48410-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics