Skip to main content

The Relative Lyapunov Indicators: Theory and Application to Dynamical Astronomy

  • Chapter
  • First Online:
Chaos Detection and Predictability

Part of the book series: Lecture Notes in Physics ((LNP,volume 915))

Abstract

A recently introduced chaos detection method, the Relative Lyapunov Indicator (RLI) is investigated in the cases of symplectic mappings and continuous Hamiltonian systems. It is shown that the RLI is an efficient numerical tool in determining the true nature of individual orbits, and in separating ordered and chaotic regions of the phase space of dynamical systems. A comparison between the RLI and some other variational indicators are presented, as well as the recent applications of the RLI to various problems of dynamical astronomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case of continuous dynamical systems the trajectory is a continuous curve in the phase space given by the points representing the time evolution of an initial state. In discrete dynamical systems the set of the discrete points representing the time evolution of the system is called as orbit.

  2. 2.

    The values for the parameter have been taken from the interval suggested in Sect. 6.1.2.

  3. 3.

    The E norm is the normalized energy: \(\left (E - E_{mb}\right )/\left (E_{lb} - E_{mb}\right )\).

  4. 4.

    Remember that the integration time varies with the E norm , which explains the transition from dark to light gray in the background of the plots on the left side of Figs. 6.11 and 6.12. Also the time of integration is fixed to 0 where there are not initial conditions.

  5. 5.

    Here, the LIs are the numerical approximations of the spectra of Lyapunov Characteristic Exponents.

  6. 6.

    Further information on the LP-VIcode can be found at the following url: http://www.fcaglp.unlp.edu.ar/LP-VIcode/.

References

  1. Barrio, R.: Sensitivity tools vs. Poincaré sections. Chaos Solitons Fractals 25, 711–726 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Barrio, R., Borczyk, W., Breiter, S.: Spurious structures in chaos indicators maps. Chaos Solitons Fractals 40, 1697–1714 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Baruteau, C., Masset, F.: Recent development in Planet Migration Theory. In: Souchay, J. et al. (eds.) Tides in Astronomy and Astrophysics. Lecture Notes in Physics, vol. 861, pp. 201–253. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Belokurov, V. et al.: An orphan in the ‘Field of Streams’. Astrophys. J. 658, 337–344 (2007)

    Article  ADS  Google Scholar 

  5. Benettin, G., Galgani L., Giorgilli, A., Strelcyn, J.: Lyapunov characteristic exponents for smooth dynamical systems; a method for computing all of them. Meccanica 15, Part I: theory, 9–20; Part II: Numerical Applications, 21–30 (1980)

    Google Scholar 

  6. Carpintero, D., Maffione, N., Darriba, L.: LP–VIcode: a program to compute a suite of variational chaos indicators. Astron. Comput. 5, 19–27 (2014)

    Article  ADS  Google Scholar 

  7. Celletti, A., Kotoulas, T., Voyatzis, G., Hadjidemetriou, J.: The dynamical stability of a Kuiper Belt-like region. Mon. Not. R. Astron. Soc. 378, 1153–1164 (2007)

    Article  ADS  Google Scholar 

  8. Christodoulidi, H., Bountis, T.: Low-dimensional quasiperiodic motion in Hamiltonian systems. ROMAI J. 2, 37–44 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Cincotta, P., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials – I. Astron. Astrophys. 147, 205–228 (2000)

    ADS  Google Scholar 

  10. Cincotta, P., Giordano, C., Simó, C.: Phase space structure of multidimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 151–178 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Contopoulos, G., Voglis, N.: A fast method for distinguishing between ordered and chaotic orbits. Astron. Astrophys. 317, 73–81 (1997)

    ADS  Google Scholar 

  12. Cooper, A.P., et al.: Galactic stellar haloes in the CDM model. Mon. Not. R. Astron. Soc. 406, 744–766 (2010)

    Article  ADS  Google Scholar 

  13. Darriba, L.A., Maffione, N.P., Cincotta, P.M., Giordano, C.M.: Comparative study of variational chaos indicators and ODEs’ numerical integrators. Int. J. Bifurcat. Chaos 22, 1230033 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Darriba, L., Maffione, N., Cincotta, P., Giordano, C.: Chaos detection tools: the LP–Vicode and its applications. In: Cincotta, P., Giordano, C., Efthymiopoulos, C. (eds.) Chaos, Diffusion and Non-integrability in Hamiltonian Systems-Application to Astronomy, pp. 345–366. Universidad Nacional de La Plata and Asociación Argentina de Astronomía Publishers, La Plata (2012)

    Google Scholar 

  15. Érdi, B., Rajnai, R., Sándor, Z., Forgács-Dajka, E.: Stability of higher order resonances in the restricted three-body problem. Celest. Mech. Dyn. Astron. 113, 95–112 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fouchard, M., Lega, E., Froeschlé, Ch., Froeschlé, Cl.: On the relationship between fast lyapunov indicator and periodic orbits for continuous flows. Celest. Mech. Dyn. Astron. 83, 205–222 (2002)

    Google Scholar 

  17. Froeschlé, Cl., Gonczi, R., Lega, E.: The fast lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt. Planet. Space Sci. 45, 881–886 (1997)

    Google Scholar 

  18. Geiger, P., Dellago, C.: Identifying rare chaotic and regular trajectories in dynamical systems with Lyapunov weighted path sampling. Chem. Phys. 375, 309–315 (2010)

    Article  ADS  Google Scholar 

  19. Gómez, F., Helmi, A., Cooper A., Frenk, C., Navarro, J., White, S.: Streams in the Aquarius stellar haloes. Mon. Not. R. Astron. Soc. 436, 3602–3613 (2013)

    Article  ADS  Google Scholar 

  20. Guzzo, M., Lega, E., Froeschl’e, C.: On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems. Physica D 163, 1–25 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astrophys. J. 69, 73–79 (1964)

    MathSciNet  Google Scholar 

  22. Ibata, R.A., Irwin, M.J., Lewis, G.F., Stolte, A.: Galactic halo substructure in the sloan digital sky survey: the ancient tidal stream from the Sagittarius Dwarf Galaxy. Astrophys. J. 547, 133–136 (2001)

    Article  ADS  Google Scholar 

  23. Kasting, J.F., Whitmire, D.P., Reynolds, R.T.: Habitable zones around main sequence stars. Icarus 101, 108–128 (1993)

    Article  ADS  Google Scholar 

  24. Kley, W., Lee, M.H., Murray, N., Peale, S.J.: Modeling the resonant planetary system GJ 876. Astron. Astrophys. 437, 727–742 (2005)

    Article  ADS  Google Scholar 

  25. Kopparapu, R.K., Ramirez, R., Kasting, J.F., et al.: Habitable zones around main-sequence stars: New estimates. Astrophys. J. 765, (2013), article id. 131, 16 pp.

    Google Scholar 

  26. Laskar, J.: Frequency analysis of a dynamical system. Celest. Mech. Dyn. Astron. 56, 191–196 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Maffione, N., Darriba, L., Cincotta, P., Giordano, C.: A comparison of different indicators of chaos based on the deviation vectors: application to symplectic mappings. Celest. Mech. Dyn. Astron. 111, 285–307 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. Majewski, S.R., Skrutskie, M.F., Weinberg, M.D., Ostheimer, J.C.: A two micron all sky survey view of the Sagittarius dwarf galaxy. I. Morphology of the Sagittarius core and tidal arms. Astrophys. J. 599, 1082–1115 (2003)

    Google Scholar 

  29. Manos, T., Skokos, Ch., Antonopoulos, Ch.: Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method. Int. J. Bifurcat. Chaos 22, 1250218 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Meschiari, S., Wolf, A.S., Rivera, E., Laughlin, G., Vogt, S., Butler, P.: Systemic: a testbed for characterizing the detection of extrasolar planets. I. The systemic console package. Publ. Astron. Soc. Pac. 121, 1016–1027 (2009)

    Article  ADS  Google Scholar 

  31. Mestre, M., Cincotta, P., Giordano, C.: Analytical relation between two chaos indicators: FLI and MEGNO. Mon. Not. R. Astron. Soc. Lett. 414, 100–103 (2011)

    Article  ADS  Google Scholar 

  32. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  33. Navarro, J., Frenk, C., White, S.: The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996)

    Article  ADS  Google Scholar 

  34. Navarro, J., Frenk, C., White, S.: A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    Article  ADS  Google Scholar 

  35. Sándor, Z., Kley, W.: On the evolution of the resonant planetary system HD 128311. Astron. Astrophys. 451, L31–L34 (2006)

    Article  ADS  Google Scholar 

  36. Sándor, Z., Érdi, B., Efthymiopoulos, C.: The phase space structure around L 4 in the restricted three-body problem. Celest. Mech. Dyn. Astron. 78, 113–123 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Sándor, Z., Érdi, B., Széll, A., Funk, B.: The relative lyapunov indicator: an efficient method of chaos detection. Celest. Mech. Dyn. Astron. 90, 127–138 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Sándor, Z., Süli, Á., Érdi, B., Pilat-Lohinger, E., Dvorak, R.: A stability catalogue of the habitable zones in extrasolar planetary systems. Mon. Not. R. Astron. Soc. 375, 1495–1502 (2007)

    Article  ADS  Google Scholar 

  39. Sándor, Z., Kley, W., Klagyivik, P.: Stability and formation of the resonant system HD 73526. Astron. Astrophys. 472, 981–992 (2007)

    Article  ADS  Google Scholar 

  40. Skokos, Ch.: Alignment indices: a new, simple method to for determining the ordered or chaotic nature of orbits. J. Phys. A Math. Gen. 34, 10029–10043 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Skokos, Ch.: The Lyapunov Characteristic Exponents and Their Computation. Lecture Notes in Physics, vol. 790, pp. 63–135. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  42. Skokos, Ch., Antonopoulos, Ch., Bountis, T., Vrahatis, M.: Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A Math. Gen. 37, 6269–6284 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. Skokos, Ch., Bountis, T., Antonopoulos, Ch.: Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method. Physica D 231, 30–54 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Skokos, Ch., Bountis, T., Antonopoulos, Ch.: Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the Generalized Alignment Index method. Eur. Phys. J. Spec. Top. 165, 5–14 (2008)

    Article  Google Scholar 

  45. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic, New York (1967)

    Google Scholar 

  46. Széll, A., Érdi, B., Sándor, Z., Steves, B.: Chaotic and stable behaviour in the Caledonian symmetric four-body problem. Mon. Not. R. Astron. Soc. 347, 380–388 (2004)

    Article  ADS  Google Scholar 

  47. Tinney, C.G., Butler, R.P., Marcy, G.W., et al.: The 2:1 resonant exoplanetary system orbiting HD 73526. Astrophys. J. 647, 594–599 (2006)

    Article  ADS  Google Scholar 

  48. Vogelsberger, M., White, S., Helmi, A., Springel, V.: The fine-grained phase-space structure of cold dark matter haloes. Mon. Not. R. Astron. Soc. 385, 236–254 (2008)

    Article  ADS  Google Scholar 

  49. Voglis, N., Contopoulos, G., Efthymiopoulos, C.: Detection of ordered and chaotic motion using the dynamical spectra. Celest. Mech. Dyn. Astron. 73, 211–220 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Voyatzis, G.: Chaos, order, and periodic orbits in 3:1 resonant planetary dynamics. Astrophys. J. 675, 802–816 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the invitation and support of the scientific coordinators of the international workshop on Methods of Chaos Detection and Predictability: Theory and Applications: Georg Gottwald, Jacques Laskar and Haris Skokos and the hospitality of the Max Planck Institute for the Physics of Complex Systems where the meeting took place. ZsS is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. NM is supported with grants from the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CCT - La Plata) and the Universidad Nacional de La Plata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Sándor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sándor, Z., Maffione, N. (2016). The Relative Lyapunov Indicators: Theory and Application to Dynamical Astronomy. In: Skokos, C., Gottwald, G., Laskar, J. (eds) Chaos Detection and Predictability. Lecture Notes in Physics, vol 915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48410-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48410-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48408-1

  • Online ISBN: 978-3-662-48410-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics