Skip to main content

The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection

  • Chapter
  • First Online:
Book cover Chaos Detection and Predictability

Part of the book series: Lecture Notes in Physics ((LNP,volume 915))

Abstract

We provide a concise presentation of the Smaller (SALI) and the Generalized Alignment Index (GALI) methods of chaos detection. These are efficient chaos indicators based on the evolution of two or more, initially distinct, deviation vectors from the studied orbit. After explaining the motivation behind the introduction of these indices, we sum up the behaviors they exhibit for regular and chaotic motion, as well as for stable and unstable periodic orbits, focusing mainly on finite-dimensional conservative systems: autonomous Hamiltonian models and symplectic maps. We emphasize the advantages of these methods in studying the global dynamics of a system, as well as their ability to identify regular motion on low dimensional tori. Finally we discuss several applications of these indices to problems originating from different scientific fields like celestial mechanics, galactic dynamics, accelerator physics and condensed matter physics.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-662-48410-4_9

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-662-48410-4_9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that the value of \(\lambda _{1}\) is independent of the used norm.

  2. 2.

    We note that throughout this chapter we use the hat symbol (\(\,\hat{}\,\)) to denote a unit vector.

  3. 3.

    For Hamiltonian systems the time is a continuous variable, while for maps it is a discrete one counting the map’s iterations.

  4. 4.

    We note that throughout this chapter the logarithm to base 10 is denoted by \(\log\).

  5. 5.

    We note that here, as well as in several, forthcoming figures in this chapter, the evaluation of the LEs is done only for confirming the theoretical predictions for the time evolution of the SALI (Eq. (5.12) in the current case) and later on of the GALIs, and it is not needed for the computation of the SALI and the GALIs.

  6. 6.

    Note that this parallelogram is not the usual 2d parallelogram on the plane because its sides (the deviation vectors) are not 2d vectors.

  7. 7.

    For a brief introduction to the notion of the wedge product the reader is referred to the Appendix A of [84] and the Appendix of [81].

  8. 8.

    A proof of the second equality of (5.14) can be found in the Appendix B of [84].

  9. 9.

    It is worth mentioning here that other chaos indicators, like the Orthogonal Fast Lyapunov Indicator (OFLI) and its variations [7, 8], are quite successful in performing this task as they were actually designed for this purpose.

References

  1. Antonopoulos, Ch., Bountis, T.: Detecting order and chaos by the Linear Dependence Index (LDI) method. ROMAI J. 2(2), 1–13 (2006)

    MATH  MathSciNet  Google Scholar 

  2. Antonopoulos, Ch., Christodoulidi, H.: Weak chaos detection in the Fermi-Pasta-Ulam-α system using q-Gaussian statistics. Int. J. Bifurcat. Chaos 21, 2285 (2011)

    Article  Google Scholar 

  3. Antonopoulos, Ch., Manos, A., Skokos, Ch.: SALI: an efficient indicator of chaos with application to 2 and 3 degrees of freedom Hamiltonian systems. In: Tsahalis, D.T. (ed.) From Scientific Computing to Computational Engineering. Proceedings of the 1st International Conference, vol. III, pp. 1082–1088. Patras University Press, Patras (2005)

    Google Scholar 

  4. Antonopoulos, Ch., Bountis, T., Skokos, Ch.: Chaotic dynamics of N-degree of freedom Hamiltonian systems. Int. J. Bifurcat. Chaos 16, 1777–1793 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Antonopoulos, Ch., Basios, V., Bountis, T.: Weak chaos and the ‘Melting Transition’ in a confined microplasma system. Phys. Rev. E 81, 016211 (2010)

    Article  ADS  Google Scholar 

  6. Antonopoulos, C., Basios, V., Demongeot, J, Nardone, P., Thomas, R.: Linear and nonlinear arabesques: a study of closed chains of negative 2-element circuits. Int. J. Bifurcat. Chaos 23, 1330033 (2013)

    Article  MATH  Google Scholar 

  7. Bario, R.: Sensitivity tools vs. Poincaré sections. Chaos Solitons Fractals 25, 711–726 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bario, R.: Painting chaos: a gallery of sensitivity plots of classical problems. Int. J. Bifurcat. Chaos 16, 2777–2798 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Barrio, R., Borczyk, W., Breiter, S.: Spurious structures in chaos indicators maps. Chaos Solitons Fractals 40, 1697–1714 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Benettin, G., Galgani, L.: Lyapunov characteristic exponents and stochasticity. In: Laval, G., Grésillon, D. (eds.) Intrinsic Stochasticity in Plasmas, pp. 93–114. Edit. Phys., Orsay (1979)

    Google Scholar 

  11. Benettin, G., Galgani, L., Strelcyn, J.M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338–2344 (1976)

    Article  ADS  Google Scholar 

  12. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Tous les nombres caractéristiques sont effectivement calculables. C. R. Acad. Sc. Paris Sér. A 286, 431–433 (1978)

    ADS  MATH  MathSciNet  Google Scholar 

  13. Benettin, G., Froeschlé, C., Scheidecker, J.P.: Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom. Phys. Rev. A 19, 2454–2460 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  14. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: theory. Meccanica (March) 9–20 (1980)

    Google Scholar 

  15. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 2: Numerical application. Meccanica (March) 21–30 (1980)

    Google Scholar 

  16. Boreux, J., Carletti, T., Skokos, Ch., Vittot, M.: Hamiltonian control used to improve the beam stability in particle accelerator models. Commun. Nonlinear Sci. Numer. Simul. 17, 1725–1738 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Boreux, J., Carletti, T., Skokos, Ch., Papaphilippou, Y., Vittot, M.: Efficient control of accelerator maps. Int. J. Bifurcat. Chaos 22(9), 1250219 (2012)

    Article  MathSciNet  Google Scholar 

  18. Bountis, T., Papadakis, K.E.: The stability of vertical motion in the N-body circular Sitnikov problem. Celest. Mech. Dyn. Astron. 104, 205–225 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Bountis, T., Skokos, Ch.: Application of the SALI chaos detection method to accelerator mappings. Nucl. Instrum. Methods Phys. Res. A 561, 173–179 (2006)

    Article  ADS  Google Scholar 

  20. Bountis, T.C., Skokos, Ch.: Complex Hamiltonian Dynamics. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  21. Bountis, T., Manos, T., Christodoulidi, H.: Application of the GALI Method to localization dynamics in nonlinear systems. J. Comp. Appl. Math. 227, 17–26 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Broucke, R.A.: Periodic orbits in the elliptic restricted three–body problem. NASA, Jet Propulsion Laboratory, Tech. Rep. 32-1360 (1969)

    Google Scholar 

  23. Capuzzo-Dolcetta, R., Leccese, L., Merritt, D., Vicari, A.: Self-consistent models of cuspy triaxial galaxies with dark matter haloes. Astrophys. J. 666, 165–180 (2007)

    Article  ADS  Google Scholar 

  24. Carpintero, D.D., Maffione, N., Darriba, L.: LP–VIcode: a program to compute a suite of variational chaos indicators. Astron. Comput. 5, 19–27 (2014)

    Article  ADS  Google Scholar 

  25. Carpintero, D.D., Muzzio, J.C., Navone, H.D.: Models of cuspy triaxial stellar systems –III. The effect of velocity anisotropy on chaoticity. Mon. Not. R. Astron. Soc. 438, 2871–2881 (2014)

    Article  ADS  Google Scholar 

  26. Casati, G., Chirikov, B.V., Ford, J.: Marginal local instability of quasi-periodic motion. Phys. Lett. A 77, 91–94 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  27. Christodoulidi, H., Bountis, T.: Low-dimensional quasiperiodic motion in Hamiltonian systems. ROMAI J. 2(2), 37–44 (2006)

    MATH  MathSciNet  Google Scholar 

  28. Christodoulidi, H., Efthymiopoulos, Ch.: Low-dimensional q-tori in FPU lattices: dynamics and localization properties. Physica D 261, 92 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Christodoulidi, H., Efthymiopoulos, Ch., Bountis, T.: Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. Phys. Rev. E 81, 016210 (2010)

    Article  ADS  Google Scholar 

  30. Cincotta, P.M., Efthymiopoulos, C., Giordano, C.M., Mestre, M.F.: Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river. Physica D 266, 49–64 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin, Heidelberg (2002)

    Book  MATH  Google Scholar 

  32. Contopoulos, G., Galgani, L., Giorgilli, A.: On the number of isolating integrals in Hamiltonian systems. Phys. Rev. A 18, 1183–1189 (1978)

    Article  ADS  Google Scholar 

  33. Darriba, L.A., Maffione, N.P., Cincotta, P.M., Giordano, C.M.: Comparative study of variational chaos indicators and ODEs’ numerical integrators. Int. J. Bifurcat. Chaos 22, 1230033 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Dullin, H.R., Meiss, J.D., Sterling, D.: Generic twistless bifurcations. Nonlinearity 13, 203–224 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Faranda, D., Mestre, M.F., Turchetti, G.: Analysis of round off errors with reversibility test as a dynamical indicator. Int. J. Bifurcat. Chaos 22, 1250215 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Fermi, E., Pasta, J., Ulam, S.: Studies of nonlinear problems. I. Los Alamos Rep LA-1940 (1955)

    Google Scholar 

  37. Froeschlé, C., Gonczi, R., Lega, E.: The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt. Planet. Space Sci. 45, 881–886 (1997)

    Google Scholar 

  38. Gerlach, E., Eggl, S., Skokos, Ch.: Efficient integration of the variational equations of multi–dimensional Hamiltonian systems: application to the Fermi–Pasta–Ulam lattice. Int. J. Bifurcat. Chaos 22, 1250216 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A 460, 603–611 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Hadjidemetriou, J.: The stability of periodic orbits in the three-body problem. Celest. Mech. 12, 255–276 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Haken, H.: At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point. Phys. Lett. A 94, 71–72 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  42. Harsoula, M., Kalapotharakos, C.: Orbital structure in N-body models of barred-spiral galaxies. Mon. Not. R. Astron. Soc. 394, 1605–1619 (2009)

    Article  ADS  Google Scholar 

  43. Hénon, M., Heiles, C.: The applicability of the third integral of motion: Some numerical experiments. Astron. J. 69, 73–79 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  44. Howard, J.E., Dullin, H.R.: Linear stability of natural symplectic maps. Phys. Lett. A 246, 273–283 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Howard, J.E., MacKay, R.S.: Linear stability of symplectic maps. J. Math. Phys. 28, 1036–1051 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Huang, G., Cao, Z.: Numerical analysis and circuit realization of the modified LÜ chaotic system. Syst. Sci. Control Eng. 2, 74–79 (2014)

    Article  Google Scholar 

  47. Huang, G-Q, Wu, X.: Analysis of Permanent-Magnet Synchronous Motor Chaos System. Lecture Notes in Computer Science, vol. 7002, pp. 257–263. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  48. Huang, G.Q., Wu, X.: Analysis of new four-dimensional chaotic circuits with experimental and numerical methods. Int. J. Bifurcat. Chaos 22, 1250042 (2012)

    Article  Google Scholar 

  49. Huang, G., Zhou, Y.: Circuit simulation of the modified Lorenz system. J. Inf. Comput. Sci. 10, 4763–4772 (2013)

    Article  MathSciNet  Google Scholar 

  50. Kalapotharakos, C.: The rate of secular evolution in elliptical galaxies with central masses. Mon. Not. R. Astron. Soc. 389, 1709–1721 (2008)

    Article  ADS  Google Scholar 

  51. Kantz, H., Grassberger, P.: Internal Arnold diffusion and chaos thresholds in coupled symplectic maps. J. Phys. A 21, L127–133 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Kyriakopoulos, N., Koukouloyannis, V., Skokos, Ch., Kevrekidis, P.: Chaotic behavior of three interacting vortices in a confined Bose-Einstein condensate. Chaos 24, 024410 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  53. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  54. Lukes-Gerakopoulos, G.: Adjusting chaotic indicators to curved spacetimes. Phys. Rev. D 89, 043002 (2014)

    Article  ADS  Google Scholar 

  55. Lyapunov, A.M.: The general problem of the stability of motion. Taylor and Francis, London (1992) (English translation from the French: Liapounoff, A.: Problème général de la stabilité du mouvement. Annal. Fac. Sci. Toulouse 9, 203–474 (1907). The French text was reprinted in Annals Math. Studies vol. 17. Princeton University Press (1947). The original was published in Russian by the Mathematical Society of Kharkov in 1892)

    MATH  Google Scholar 

  56. Macek, M., Stránský, P., Cejnar, P., Heinze, S., Jolie, J., Dobeš, J.: Classical and quantum properties of the semiregular arc inside the Casten triangle. Phys. Rev. C 75, 064318 (2007)

    Article  ADS  Google Scholar 

  57. Macek, M, Dobeš, J., Cejnar, P.: Occurrence of high-lying rotational bands in the interacting boson model. Phys. Rev. C 82, 014308 (2010)

    Article  ADS  Google Scholar 

  58. Macek, M, Dobeš, J., Stránský, P., Cejnar, P.: Regularity-induced separation of intrinsic and collective dynamics. Phys. Rev. Lett. 105, 072503 (2010)

    Article  ADS  Google Scholar 

  59. Maffione, N.P., Darriba, L.A., Cincotta, P.M., Giordano, C.M.: A comparison of different indicators of chaos based on the deviation vectors: Application to symplectic mappings. Celest. Mech. Dyn. Astron. 111, 285–307 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  60. Manos, T., Athanassoula, E.: Regular and chaotic orbits in barred galaxies - I. Applying the SALI/GALI method to explore their distribution in several models. Mon. Not. R. Astron. Soc. 415, 629–642 (2011)

    Google Scholar 

  61. Manos, T., Machado, R.E.G.: Chaos and dynamical trends in barred galaxies: bridging the gap between N-body simulations and time-dependent analytical models. Mon. Not. R. Astron. Soc. 438, 2201–2217 (2014)

    Article  ADS  Google Scholar 

  62. Manos, T., Robnik, M.: Survey on the role of accelerator modes for the anomalous diffusion: The case of the standard map. Phys. Rev. E 89, 022905 (2014)

    Article  ADS  Google Scholar 

  63. Manos, T., Ruffo, S.: Scaling with system size of the Lyapunov exponents for the Hamiltonian mean field model. Transp. Theory Stat. Phys. 40, 360–381 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Manos, T., Skokos, Ch., Bountis, T.: Application of the Generalized Alignment Index (GALI) method to the dynamics of multi-dimensional symplectic maps. In: Chandre C., Leoncini, X., Zaslavsky, G. (eds.) Chaos, Complexity and Transport: Theory and Applications. Proceedings of the CCT 07, pp. 356–364. World Scientific, Singapore (2008)

    Chapter  Google Scholar 

  65. Manos, T., Skokos, Ch., Athanassoula, E., Bountis, T.: Studying the global dynamics of conservative dynamical systems using the SALI chaos detection method. Nonlinear Phenomen. Complex Syst. 11(2), 171–176 (2008)

    MathSciNet  Google Scholar 

  66. Manos, T., Skokos, Ch., Bountis, T.: Global dynamics of coupled standard maps. In: Contopoulos, G., Patsis, P.A. (eds.) Chaos in Astronomy, Astrophysics and Space Science Proceedings, pp. 367–371. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  67. Manos, T., Skokos, Ch., Antonopoulos, Ch.: Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method. Int. J. Bifurcat. Chaos 22, 1250218 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  68. Manos, T., Bountis, T., Skokos, Ch.: Interplay between chaotic and regular motion in a time-dependent barred galaxy model. J. Phys. A Math. Theor. 46, 254017 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Nagashima, T., Shimada, I.: On the C-system-like property of the Lorenz system. Prog. Theor. Phys. 58, 1318–1320 (1977)

    Article  ADS  Google Scholar 

  70. Oseledec, V.I.: A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  71. Paleari, S., Penati, T.: Numerical Methods and Results in the FPU Problem. Lecture Notes in Physics, vol. 728, pp. 239–282. Springer, Berlin (2008)

    Google Scholar 

  72. Panagopoulos, P., Bountis, T.C., Skokos, Ch.: Existence and stability of localized oscillations in 1-dimensional lattices with soft spring and hard spring potentials. J. Vib. Acoust. 126, 520–527 (2004)

    Article  Google Scholar 

  73. Petalas,, Y.G., Antonopoulos, C.G., Bountis, T.C., Vrahatis, M.N.: Evolutionary methods for the approximation of the stability domain and frequency optimization of conservative maps. Int. J. Bifurcat. Chaos 18, 2249–2264 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  74. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 77, 2nd edn. The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  75. Racoveanu, O.: Comparison of chaos detection methods in the circular restricted three-body problem. Astron. Nachr. 335, 877–885 (2014)

    Article  ADS  Google Scholar 

  76. Saha, L.M., Sahni, N.: Chaotic evaluations in a modified coupled logistic type predator-prey model. Appl. Math. Sci. 6(139), 6927–6942 (2012)

    MathSciNet  Google Scholar 

  77. Sándor, Zs., Érdi, B., Széll, A., Funk, B.: The relative Lyapunov indicator: an efficient method of chaos detection. Celest. Mech. Dyn. Astron. 90, 127–138 (2004)

    Google Scholar 

  78. Shimada, I., Nagashima, T.: A numerical approach to ergodic problem of dissipative dynamical systems. Prog. Theor. Phys. 61, 1605–1615 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  79. Skokos, Ch.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A 34, 10029–10043 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  80. Skokos, Ch.: On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems. Physica D 159, 155–179 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  81. Skokos, Ch.: The Lyapunov Characteristic Exponents and their Computation. Lecture Notes in Physics, vol. 790, pp. 63–135. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  82. Skokos, Ch., Antonopoulos, Ch., Bountis, T.C., Vrahatis, M.N.: How does the smaller alignment index (SALI) distinguish order from chaos? Prog. Theor. Phys. Suppl. 150, 439–443 (2003)

    Article  ADS  Google Scholar 

  83. Skokos, Ch., Antonopoulos, Ch., Bountis, T.C., Vrahatis, M.N.: Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A 37, 6269–6284 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  84. Skokos, Ch., Bountis, T.C., Antonopoulos, Ch.: Geometrical properties of local dynamics in Hamiltonian systems: the generalized alignment index (GALI) method. Physica D 231, 30–54 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  85. Skokos, Ch., Bountis, T.C., Antonopoulos, Ch.: Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the generalized alignment index method. Eur. Phys. J. Spec. Top. 165, 5–14 (2008)

    Article  Google Scholar 

  86. Stránský, P., Cejnar, P., Macek, M.: Order and chaos in the Geometric Collective Model. Phys. At. Nucl. 70(9), 1572–1576 (2007)

    Article  Google Scholar 

  87. Stránský, P., Hruška, P., Cejnar, P.: Quantum chaos in the nuclear collective model: classical-quantum correspondence. Phys. Rev. E 79, 046202 (2009)

    Article  ADS  Google Scholar 

  88. Soulis, P., Bountis, T., Dvorak, R.: Stability of motion in the Sitnikov 3-body problem. Celest. Mech. Dyn. Astron. 99, 129–148 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  89. Soulis, P.S., Papadakis, K.E., Bountis, T.: Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100, 251–266 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  90. Széll, A., Érdi, B., Sándor, Z., Steves, B.: Chaotic and stable behavior in the Caledonian Symmetric Four-Body problem. Mon. Not. R. Astron. Soc. 347, 380–388 (2004)

    Article  ADS  MATH  Google Scholar 

  91. Voglis, N., Contopoulos, G., Efthymiopoulos, C.: Method for distinguishing between ordered and chaotic orbits in four-dimensional maps. Phys. Rev. E 57, 372–377 (1998)

    Article  ADS  Google Scholar 

  92. Voglis, N., Contopoulos, G., Efthymiopoulos, C.: Detection of ordered and chaotic motion using the dynamical spectra. Celest. Mech. Dyn. Astron. 73, 211–220 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  93. Voglis, N., Harsoula, M., Contopoulos, G.: Orbital structure in barred galaxies. Mon. Not. R. Astron. Soc. 381, 757–770 (2007)

    Article  ADS  Google Scholar 

  94. Voyatzis, G.: Chaos, order, and periodic orbits in 3:1 resonant planetary dynamics. Astrophys. J. 675, 802–816 (2008)

    Article  ADS  Google Scholar 

  95. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  96. Zotos, E.E.: Classifying orbits in galaxy models with a prolate or an oblate dark matter halo component. Astron. Astrophys. 563, A19 (2014)

    Article  ADS  Google Scholar 

  97. Zotos, E.E., Caranicolas, N.D.: Order and chaos in a new 3D dynamical model describing motion in non-axially symmetric galaxies. Nonlinear Dyn. 74, 1203–1221 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Many of the results described in this chapter were obtained in close collaboration with Prof. T. Bountis, Dr. Ch. Antonopoulos and Dr. E. Gerlach. This work was partially supported by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: ‘THALES’. Ch. S. would like to thank the Research Office of the University of Cape Town for the Research Development Grant which funded part of this study, as well as the Max Planck Institute for the Physics of Complex Systems in Dresden for its hospitality during his visit in December 2014–January 2015, when part of this work was carried out. In addition, Ch. S. thanks T. van Heerden for the careful reading of the manuscript and for his valuable comments. We are also grateful to the three anonymous referees whose constructive remarks helped us improve the content and the clarity of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos (Haris) Skokos .

Editor information

Editors and Affiliations

Appendix: Pseudo-Codes for the Computation of the SALI and the GALI k

Appendix: Pseudo-Codes for the Computation of the SALI and the GALI k

We present here pseudo–codes for the numerical computation of the SALI (Table 5.1) and the GALI k (Table 5.2) methods, according to the algorithms presented in Sects. 5.2 and 5.3.1 respectively.

Table 5.1 Numerical computation of the SALI
Table 5.2 Numerical computation of the GALI k

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skokos, C.(., Manos, T. (2016). The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection. In: Skokos, C., Gottwald, G., Laskar, J. (eds) Chaos Detection and Predictability. Lecture Notes in Physics, vol 915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48410-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48410-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48408-1

  • Online ISBN: 978-3-662-48410-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics