Skip to main content

Composite Continuous Anti-disturbance Autopilot Design for Missile System with Mismatched Disturbances

  • Conference paper
  • First Online:
Proceedings of the 2015 Chinese Intelligent Systems Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE))

  • 1730 Accesses

Abstract

In this paper, the problem of autopilot design for missile system with mismatched disturbances is considered via a sliding mode control method and finite time disturbance observer. Firstly, a finite time disturbance observer is designed to estimate the mismatched disturbances. Secondly, based on disturbance estimation values and traditional sliding mode surface, a novel sliding mode surface is constructed. Thirdly, a composite continuous anti-disturbance autopilot is developed, which can guarantee system output converge to reference signal. Finally, a simulation result is presented to demonstrate the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichert R (1990) Dynamic scheduling of modern robust control for missile autopilot design. In: Proceedings of automatic control conference, pp 2368–2373

    Google Scholar 

  2. Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 47(4):932–938

    Article  Google Scholar 

  3. Guo L, Tomizuka M (1997) High-speed and high-precision motion control with an optimal hybrid feedforward controller. IEEE/ASME Trans Mechatron 2(2):110–122

    Article  Google Scholar 

  4. Ishikawa J, Tomizuka M (1998) A novel add-on compensator for cancellation of pivot nonlinearities in hard disk drives. IEEE Trans Magn 34(4):1895–1897

    Article  Google Scholar 

  5. Huang YH, Messner W (1998) A novel disturbance observer design for magnetic hard drive servo system with rotary actuator. IEEE Trans Magn 34(4):1892–1894

    Article  Google Scholar 

  6. Chen XS, Yang J, Li SH, Li Q (2009) Disturbance observer based multi-variable control of ball mill grinding circuits. J Process Control 19(7):1205–1213

    Article  Google Scholar 

  7. Yang J, Li SH, Chen XS, Li Q (2010) Disturbance rejection of ball mill grinding circuits using DOB and MPC. Powder Technol 198(2):219–228

    Article  Google Scholar 

  8. Li SH, Sun HB, Sun CY (2012) Composite controller design for an airbreathing hypersonic vehicle. Proc Inst Mech Eng Part I: J Syst Control Eng 226(5):651–664

    Google Scholar 

  9. Sun HB, Li SH, Sun CY (2012) Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn 73:229–244

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun HB, Li SH, Fei SM (2011) A composite control scheme for 6DOF spacecraft formation control. Acta Astronaut 69(7–8):595–611

    Article  Google Scholar 

  11. Sun HB, Li SH (2013) Composite control method for stabilizing spacecraft attitude in terms of rodrigues parameters. Chin J Aeronaut 26(3):687–696

    Article  Google Scholar 

  12. Chen WH (2003) Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J Guid Control Dyn 26(1):161–166

    Article  Google Scholar 

  13. Guo L, Wen XY (2011) Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems. Trans Inst Meas Control 33(8):942–956

    Article  Google Scholar 

  14. Yang J, Chen WH, Li SH (2011) Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory Appl 5(18): 2053–2062

    Google Scholar 

  15. Yang J, Li SH, Yu XH (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169

    Article  Google Scholar 

  16. Yang J, Li SH, Su JY, Yu XH (2013) Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7):2287–2291

    Article  MathSciNet  MATH  Google Scholar 

  17. Levant A (2003) Higher-order sliding modes, differentiation and output-feedback control. Int J Control 76(9–10):924–941

    Article  MathSciNet  MATH  Google Scholar 

  18. Shtessel YB, Shkolnikov IA, Levant A (2007) Smooth second-order sliding modes: missile guidance application. Automatica 43(8):1470–1476

    Article  MathSciNet  MATH  Google Scholar 

  19. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766

    Article  MathSciNet  MATH  Google Scholar 

  20. Li SH, Tian YP (2007) Finite time stability of cascaded time-varying systems. Int J Control 80(4):646–657

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China(Nos. 61203064,61403227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibin Sun or Jiayuan Shan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, X., Sun, H., Shan, J. (2016). Composite Continuous Anti-disturbance Autopilot Design for Missile System with Mismatched Disturbances. In: Jia, Y., Du, J., Li, H., Zhang, W. (eds) Proceedings of the 2015 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48386-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48386-2_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48384-8

  • Online ISBN: 978-3-662-48386-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics