Advertisement

Condition Universality of Heterogeneous Drag Model

  • Cheng ChenEmail author
Chapter
  • 385 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Whether a mathematical model is theoretically valuable lies in whether it is universal. As far as the drag model describing heterogeneous gas–solid two-phase flow is concerned, universality means its ability to provide accurate results for normal particle types (Geldard A, B) under all operating conditions (i.e., “condition”, typically decided by empty bed gas velocity U g and particle mass flux G s).

Keywords

Slip Velocity Solid Concentration Flow Heterogeneity Heterogeneous Index Drag Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Qi HY (1997) Euler/Euler Simulation der Fluiddynamik Zirkulierender Wirbelschichten. Verlag Mainz, Wissenschaftsverlag, Aachen, Germany. ISBN3-89653-224-3Google Scholar
  2. 2.
    Bai D, Jin Y, Yu Z (1993) Flow regimes in circulating fluidized beds. Chem Eng Technol 16(5):307–313CrossRefGoogle Scholar
  3. 3.
    Bi HT, Grace JR (1995) Flow regime diagrams for gas-solid fluidization and upward transport. Int J Multiph Flow 21(6):1229–1236CrossRefzbMATHGoogle Scholar
  4. 4.
    Yang WC (2004) “Choking” revisited. Ind Eng Chem Res 43(18):5496–5506CrossRefGoogle Scholar
  5. 5.
    Wang XS, Rhodes MJ (2002) On the use of choking as a boundary for fast fluidization. Chem Eng Commun 189(2):223–236CrossRefGoogle Scholar
  6. 6.
    Bai D, Jin Y, Yu Z (1993) Flow regimes in circulating fluidized beds. Chem Eng Technol 16(5):307–313CrossRefGoogle Scholar
  7. 7.
    Namkung W, Kim SW, Kim SD (1999) Flow regimes and axial pressure profiles in a circulating fluidized bed. Chem Eng J 72(3):245–252CrossRefGoogle Scholar
  8. 8.
    Das M, Bandyopadhyay A, Meikap BC et al (2008) Axial voidage profiles and identification of flow regimes in the riser of a circulating fluidized bed. Chem Eng J 145(2):249–258CrossRefGoogle Scholar
  9. 9.
    Bi HT, Grace JR (1995) Flow regime diagrams for gas-solid fluidization and upward transport. Int J Multiph Flow 21(6):1229–1236CrossRefzbMATHGoogle Scholar
  10. 10.
    Rabinovich E, Kalman H (2011) Flow regime diagram for vertical pneumatic conveying and fluidized bed systems. Powder Technol 207(1):119–133CrossRefGoogle Scholar
  11. 11.
    Rabinovich E, Kalman H (2011) Flow regime diagram for vertical pneumatic conveying and fluidized bed systems. Powder Technol 207(1):119–133CrossRefGoogle Scholar
  12. 12.
    Smolders K, Baeyens J (2001) Gas fluidized beds operating at high velocities: a critical review of occurring regimes. Powder Technol 119(2):269–291CrossRefGoogle Scholar
  13. 13.
    Matsen JM (1982) Mechanisms of choking and entrainment. Powder Technol 32(1):21–33MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yerushalmi J, Cankurt NT (1979) Further-studies of the regimes of fluidization. Powder Technol 24(2):187–205CrossRefGoogle Scholar
  15. 15.
    Wang J (2009) A review of Eulerian simulation of Geldart A particles in gas-fluidized beds. Ind Eng Chem Res 48(12):5567–5577CrossRefGoogle Scholar
  16. 16.
    Sundaresan S (2000) Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AIChE J 46(6):1102–1105MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang W, Li Y (2004) Simulation of the clustering phenomenon in a fast fluidized bed: the importance of drag correlation. Chin J Chem Eng 12(3):335–341Google Scholar
  18. 18.
    Ullah A, Wang W, Li J (2013) Evaluation of drag models for cocurrent and countercurrent gas–solid flows. Chem Eng Sci 92:89–104CrossRefGoogle Scholar
  19. 19.
    Dong W, Wang W, Li JH (2008) A multiscale mass transfer model for gas-solid riser flows: part II-sub-grid simulation of ozone decomposition. Chem Eng Sci 63(10):2811–2823CrossRefGoogle Scholar
  20. 20.
    Li F (2009) Investigations on the turbulent gas-solid two-phase interactions in fluidized desulfurization process. Doctoral dissertation, Tsinghua University, BeijingGoogle Scholar
  21. 21.
    Dong W, Wang W, Li JH (2008) A multiscale mass transfer model for gas-solid riser flows: part II-sub-grid simulation of ozone decomposition. Chem Eng Sci 63(10):2811–2823CrossRefGoogle Scholar
  22. 22.
    Wang JW, Ge W, Li JH (2008) Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chem Eng Sci 63:1553–1571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Tsinghua UniversityBeijingChina

Personalised recommendations