Advertisement

Introduction

  • Cheng ChenEmail author
Chapter
  • 399 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Gas–solid fluidized bed reactor is widely used in industrial processes like oil catalytic cracking, coal combustion, and flue gas desulfurization. On account of the complexity of multiscale, multipattern, and multiphase coupling (Ge et al. in CIESC J 61(7):1613–1620, 2010 [1]), in order to guide the design, amplification, and operational optimization of reactor, mathematical modeling, and numerical simulation have unshirkable responsibility.

Keywords

Direct Numerical Simulation Drag Reduction Solid Concentration Eulerian Approach Flow Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ge W, Liu X, Ren Y, Xu J, Li J (2010) From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering. CIESC J 61(7):1613–1620 (in Chinese)Google Scholar
  2. 2.
    Wang W, Hong K, Lu B, Zhang N, Li J (2013) Fluidized bed simulation: structure-dependent multiscale CFD. CIESC J 64(1):95–106 (in Chinese)Google Scholar
  3. 3.
    Wang J (2009) A review of Eulerian simulation of Geldart A particles in gas-fluidized beds. Ind Eng Chem Res 48(12):5567–5577CrossRefGoogle Scholar
  4. 4.
    Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic Press, BostonzbMATHGoogle Scholar
  5. 5.
    Lu BN, Wang W, Li JH (2009) Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows. Chem Eng Sci 64(15):3437–3447CrossRefGoogle Scholar
  6. 6.
    Benyahia S, Sundaresan S (2012) Do we need sub-grid scale corrections for both continuum and discrete gas-particle flow models. Powder Technol 220:2–6CrossRefGoogle Scholar
  7. 7.
    Wen CY, Yu YH (1966) Mechanics of fluidization. AIChE Symp 62:100–111Google Scholar
  8. 8.
    Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48(1):89–94Google Scholar
  9. 9.
    Sundaresan S (2000) Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AIChE J 46(6):1102–1105MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang W, Li Y (2004) Simulation of the clustering phenomenon in a fast fluidized bed: the importance of drag correlation. Chin J Chem Eng 12(3):335–341Google Scholar
  11. 11.
    Ullah A, Wang W, Li J (2013) Evaluation of drag models for cocurrent and countercurrent gas–solid flows. Chem Eng Sci 92:89–104CrossRefGoogle Scholar
  12. 12.
    Li J (1987) Multiscale model for two-phase flow and energy minimum method. Doctoral, The Chinese Academy of Sciences, Beijing (in Chinese)Google Scholar
  13. 13.
    Li J, Kwauk M (2001) Multiscale nature of complex fluid-particle systems. Ind Eng Chem Res 40(20):4227–4237CrossRefGoogle Scholar
  14. 14.
    Jin Y, Zhu JX, Wang ZW, Yu ZQ (2001) Fluidization engineering principles. Tsinghua University Press, Beijing (in Chinese)Google Scholar
  15. 15.
    Bai DR, Jin Y, Yu ZQ et al (1992) The axial distribution of the cross-sectional averaged voidage in fast fluidized-beds. Powder Technol 71(1):51–58CrossRefGoogle Scholar
  16. 16.
    Zhang W, Tung Y, Johnsson F (1991) Radial voidage profiles in fast fluidized-beds of different diameters. Chem Eng Sci 46(12):3045–3052CrossRefGoogle Scholar
  17. 17.
    Xu GW, Sun GG, Gao SQ (2004) Estimating radial voidage profiles for all fluidization regimes in circulating fluidized bed risers. Powder Technol 139(2):186–192CrossRefGoogle Scholar
  18. 18.
    Tortora PR, Ceccio SL, Mychkovsky AG et al (2008) Radial profiles of solids loading and flux in a gas-solid circulating fluidized bed. Powder Technol 180(3):312–320CrossRefGoogle Scholar
  19. 19.
    Qi HY (1997) Euler/Euler Simulation der Fluiddynamik Zirkulierender Wirbelschichten. Verlag Mainz, Wissenschaftsverlag, Aachen, Germany (ISBN3-89653-224-3)Google Scholar
  20. 20.
    Bi HT, Grace JR (1995) Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization. Chem Eng J Biochem Eng J 57(3):261–271CrossRefGoogle Scholar
  21. 21.
    Zhu HY, Zhu J (2008) Characterization of fluidization behavior in the bottom region of CFB risers. Chem Eng J 141(1–3):169–179CrossRefGoogle Scholar
  22. 22.
    Yang YL, Jin Y, Yu ZQ et al (1993) Local slip behavior in the circulating fluidized bed. AIChE Symp Ser 89:81–90Google Scholar
  23. 23.
    Yang YL, Jin Y, Yu ZQ et al (1992) Investigation on slip velocity distributions in the riser of dilute circulating fluidized-bed. Powder Technol 73(1):67–73CrossRefGoogle Scholar
  24. 24.
    Tanner H, Li JH, Reh L (1994) Radial profiles of slip velocity between gas and solids in circulating fluidized beds. AIChE Symp Ser 90(301):105–113Google Scholar
  25. 25.
    Yerushalmi J, Cankurt NT (1979) Further-studies of the regimes of fluidization. Powder Technol 24(2):187–205CrossRefGoogle Scholar
  26. 26.
    Huang W, Zhu J (2001) An experimental investigation on solid acceleration length in the riser of a long circulating fluidized bed. J Chem Eng Chin Univ 9(1):70–76Google Scholar
  27. 27.
    Lim KS, Zhu JX, Grace JR (1995) Hydrodynamics of gas-solid fluidization. Int J Multiph Flow 21:141–193zbMATHCrossRefGoogle Scholar
  28. 28.
    Soong CH, Tuzla K, Chen JC (1994) Identification of particle clusters in circulating fluidized bed. In: Avidan AA (ed) Circulating fluidized bed technology IV. AIChE, New York, pp 615–620Google Scholar
  29. 29.
    Tuzla K, Sharma AK, Chen JC et al (1998) Transient dynamics of solid concentration in downer fluidized bed. Powder Technol 100(2):166–172CrossRefGoogle Scholar
  30. 30.
    Guenther C, Breault R (2007) Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed. Powder Technol 173(3):163–173CrossRefGoogle Scholar
  31. 31.
    Ren J, Mao Q, Li J, Lin W (2001) Wavelet analysis of dynamic behavior in fluidized beds. Chem Eng Sci 56(3):981–988CrossRefGoogle Scholar
  32. 32.
    Lu X, Li H (1999) Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed. Chem Eng J 75(2):113–119CrossRefGoogle Scholar
  33. 33.
    Qi X, Zeng T, Huang W et al (2005) Experimental study of solids holdups inside particle clusters in CFB risers. J Sichuan Univ (Eng Sci Ed) 5:46–50 (in Chinese)Google Scholar
  34. 34.
    Lin Q, Wei F, Jin Y (2001) Transient density signal analysis and two-phase micro-structure flow in gas-solids fluidization. Chem Eng Sci 56(6):2179–2189CrossRefGoogle Scholar
  35. 35.
    Brereton CMH, Grace JR (1993) Microstructural aspects of the behavior of circulating fluidized beds. Chem Eng Sci 48(14):2565–2572CrossRefGoogle Scholar
  36. 36.
    Lackermeier U, Rudnick C, Werther J et al (2001) Visualization of flow structures inside a circulating fluidized bed by means of laser sheet and image processing. Powder Technol 114(1):71–83CrossRefGoogle Scholar
  37. 37.
    Liu X, Gao S, Li J (2004) Characteristics of particle clusters in gas-solids circulating fluidized beds by using PDPA. J Chem Ind Eng (Chin) 55(4):555–562 (in Chinese)Google Scholar
  38. 38.
    Mostoufi N, Chaouki J (2004) Flow structure of the solids in gas–solid fluidized beds. Chem Eng Sci 59(20):4217–4227CrossRefGoogle Scholar
  39. 39.
    Bi X, Zhu J, Jin Y, Yu Z (1993) Forms of particle aggregation in CFB. In: Proceedings of the 6th Chinese conference on fluidization, Huazhong University of Science and Technology, Wuhan, pp 162–167 (in Chinese)Google Scholar
  40. 40.
    Cocco R, Shaffer F, Hays R et al (2010) Particle clusters in and above fluidized beds. Powder Technol 203(1):3–11CrossRefGoogle Scholar
  41. 41.
    Noymer PD, Glicksman LR (2000) Descent velocities of particle clusters at the wall of a circulating fluidized bed. Chem Eng Sci 55(22):5283–5289CrossRefGoogle Scholar
  42. 42.
    Qi X (2003) Gas-solids two-phase flow dynamics in circulating fluidized bed risers. Doctoral dissertation, Sichuan University, Chengdu (in Chinese)Google Scholar
  43. 43.
    Liu M (2004) Study of cluster formation in dense gas-solid flow. Doctoral dissertation, Tsinghua University, Beijing (in Chinese)Google Scholar
  44. 44.
    Subbarao D (2010) A model for cluster size in risers. Powder Technol 199(1):48–54CrossRefGoogle Scholar
  45. 45.
    Zou B, Li H, Xia Y, Mooson K (1993) Statistic model for cluster size distribution in fast fluidized bed. Eng Chem Metall 14(1):36–42Google Scholar
  46. 46.
    Gu WK, Chen JC (1998) A model for solid concentration in circulating fluidized beds. Fluidization IX 501–508Google Scholar
  47. 47.
    Gu WK (1999) Diameter of catalyst clusters in FCC. AIChE Symp Ser 95(321):42–47Google Scholar
  48. 48.
    Manyele SV, Parssinen JH, Zhu JX (2002) Characterizing particle aggregates in a high-density and high-flux CFB riser. Chem Eng J 88(1–3):151–161CrossRefGoogle Scholar
  49. 49.
    Afsahi FA, Sotudeh-Gharebagh R, Mostoufi N (2009) Clusters identification and characterization in a gas–solid fluidized bed by the wavelet analysis. Can J Chem Eng 87(3):375–385CrossRefGoogle Scholar
  50. 50.
    Liu X, Gao S, Li J (2005) Characterizing particle clustering behavior by PDPA measurement for dilute gas–solid flow. Chem Eng J 108(3):193–202CrossRefGoogle Scholar
  51. 51.
    Yang TY, Leu LP (2009) Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed. AIChE J 55(3):612–629CrossRefGoogle Scholar
  52. 52.
    Harris AT, Davidson JF, Thorpe RB (2002) The prediction of particle cluster properties in the near wall region of a vertical riser. Powder Technol 127(2):128–143CrossRefGoogle Scholar
  53. 53.
    Sharma AK, Tuzla K, Matsen J et al (2000) Parametric effects of particle size and gas velocity on cluster characteristics in fast fluidized beds. Powder Technol 111(1–2):114–122CrossRefGoogle Scholar
  54. 54.
    Xu J, Zhu JX (2011) Visualization of particle aggregation and effects of particle properties on cluster characteristics in a CFB riser. Chem Eng J 168(1):376–389CrossRefGoogle Scholar
  55. 55.
    Chew JW, Parker DM, Cocco RA et al (2011) Cluster characteristics of continuous size distributions and binary mixtures of Group B particles in dilute riser flow. Chem Eng J 178:348–358CrossRefGoogle Scholar
  56. 56.
    Zhang W (2002) Study on mechanism of collision and agglomeration of fluidized particles. Doctoral dissertation, Tsinghua University, Beijing (in Chinese)Google Scholar
  57. 57.
    Zhang W, Qi H, You C, Xu X (2002) Study on mechanism of agglomeration and fragmentation of solid particles in fluidized bed. In: Proceedings of the annual meeting-2002 of Chinese society of particuology and particle technology seminar of both sides of the Taiwan straitson (in Chinese)Google Scholar
  58. 58.
    Geldart D (1973) Types of gas fluidization. Powder Technol 7(5):285–292CrossRefGoogle Scholar
  59. 59.
    Wang Y, Cheng Y, Jin Y et al (2007) On impacts of solid properties and operating conditions on the performance of gas-solid fluidization systems. Powder Technol 172(3):167–176CrossRefGoogle Scholar
  60. 60.
    Horio M, Kuroki H (1994) Three-dimensional flow visualization of dilute dispersed solids in bubbling and circulating fluidized beds. Chem Eng Sci 49(15):2413–2421CrossRefGoogle Scholar
  61. 61.
    Grace JR, Tuot J (1979) A theory for cluster formation in vertically conveyed suspensions of intermediate density. Trans Inst Chem Eng 57(1):49–54Google Scholar
  62. 62.
    Sundaresan S (2003) Instabilities in fluidized beds. Annu Rev Fluid Mech 35(1):63–88MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Matsen JM (1982) Mechanisms of choking and entrainment. Powder Technol 32(1):21–33MathSciNetCrossRefGoogle Scholar
  64. 64.
    Li HZ (2004) Multi-scale aggregation of particles in gas-solids fluidized beds. Chin Particuol 2(3):101–106CrossRefGoogle Scholar
  65. 65.
    Bai D, Jin Y (1991) The interaction between gas and particles in a vertical gas-solid flow system. J Chem Ind Eng 42(6):697–703 (in Chinese)Google Scholar
  66. 66.
    Mueller P, Reh L (1993) Particle drag and pressure drop in accelerated gas-solid flow. In: Avidan AA (ed) Preprint volume for circulating fluidized beds IV. AIChE, Somerset, New York, pp 193–198Google Scholar
  67. 67.
    Gidaspow D (1986) Hydrodynamics of fluidization and heat transfer: supercomputer modeling. Appl Mech Rev 1(39):1–22CrossRefGoogle Scholar
  68. 68.
    Syamlal M, Obrien TJ (1988) Simulation of granular layer inversion in liquid fluidized beds. Int J Multiph Flow 14(5):473–481CrossRefGoogle Scholar
  69. 69.
    Van Wachem BGM, Schouten JC, Van den Bleek CM et al (2001) Comparative analysis of CFD models of dense gas-solid systems. AIChE J 47(5):1035–1051CrossRefGoogle Scholar
  70. 70.
    Mckeen T, Pugsley T (2003) Simulation and experimental validation of a freely bubbling bed of FCC catalyst. Powder Technol 129:39–152CrossRefGoogle Scholar
  71. 71.
    Ye M, Wang J, Van der Hoef MA, Kuipers JAM (2008) Two-fluid modeling of Geldart A particles in gas-fluidized beds. Particuology 6:540–548CrossRefGoogle Scholar
  72. 72.
    Zou LM, Guo YC, Chan CK (2008) Cluster-based drag coefficient model for simulating gas–solid flow in a fast-fluidized bed. Chem Eng Sci 63(4):1052–1061CrossRefGoogle Scholar
  73. 73.
    Liu X, Xu X (2009) Modeling of dense gas-particle flow in a circulating fluidized bed by distinct cluster method (DCM). Powder Technol 195(3):235–244CrossRefGoogle Scholar
  74. 74.
    Wang S, Liu G, Lu H et al (2012) A cluster structure-dependent drag coefficient model applied to risers. Powder Technol 225:176–189CrossRefGoogle Scholar
  75. 75.
    Wang S, Yang Y, Lu H et al (2012) Computational fluid dynamic simulation based cluster structures-dependent drag coefficient model in dual circulating fluidized beds of chemical looping combustion. Ind Eng Chem Res 51(3):1396–1412CrossRefGoogle Scholar
  76. 76.
    Ye M, van der Hoef MA, Kuipers JAM (2005) The effects of particle and gas properties on the fluidization of Geldart A particles. Chem Eng Sci 60:4567–4580CrossRefGoogle Scholar
  77. 77.
    O’Brien TJ, Syamlal M (1993) Particle cluster effects in the numerical simulation of a circulating fluidized bed. In: Avidan AA (ed) Preprint volume for CFB-IV. AIChE, New York, pp 430–435Google Scholar
  78. 78.
    Cruz E, Steward FR, Pugsley T (2006) New closure models for CFD modeling of high-density circulating fluidized beds. Powder Technol 169:115–122CrossRefGoogle Scholar
  79. 79.
    Li F, Qi H, You C (2009) Basis of moderate temperature flue gas desulphurization processes in CFB-Drag force model and numerical research of two-phase flows. J Eng Thermophys 30(8):1335–1338 (in Chinese)Google Scholar
  80. 80.
    Ma J, Ge W, Xiong Q et al (2009) Direct numerical simulation of particle clustering in gas–solid flow with a macro-scale particle method. Chem Eng Sci 64(1):43–51CrossRefGoogle Scholar
  81. 81.
    Wang X (2011) Study on fluidization and bond characteristics of coarse cohesive particles in fluidized process. Doctoral dissertation, Tsinghua University, Beijing (in Chinese)Google Scholar
  82. 82.
    Wang X, Liu K, You CF (2011) Drag force model corrections based on non-uniform particle distributions in multi-particle systems. Powder Technol 209:112–118CrossRefGoogle Scholar
  83. 83.
    Van der Hoef MA, Ye M, Van Sint Annaland M et al (2006) Multiscale modeling of gas-fluidized beds. Adv Chem Eng 31:65–149CrossRefGoogle Scholar
  84. 84.
    Agrawal K, Loezos PN, Syamlal M et al (2001) The role of meso-scale structures in rapid gas-solid flows. J Fluid Mech 445:151–185zbMATHCrossRefGoogle Scholar
  85. 85.
    Wang J, Van der Hoef MA, Kuipers JAM (2009) Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: a tentative answer. Chem Eng Sci 64(3):622–625CrossRefGoogle Scholar
  86. 86.
    Shah S, Ritvanen J, Hyppänen T et al (2012) Space averaging on a gas–solid drag model for numerical simulations of a CFB riser. Powder Technol 218:131–139CrossRefGoogle Scholar
  87. 87.
    Benyahia S (2009) On the effect of subgrid drag closures. Ind Eng Chem Res 49(11):5122–5131CrossRefGoogle Scholar
  88. 88.
    Igci Y, Andrews AT, Sundaresan S et al (2008) Filtered two-fluid models for fluidized gas-particle suspensions. AIChE J 54(6):1431–1448CrossRefGoogle Scholar
  89. 89.
    Igci Y, Sundaresan S (2011) Constitutive models for filtered two-fluid models of fluidized gas-particle flows. Ind Eng Chem Res 50(23):13190–13201CrossRefGoogle Scholar
  90. 90.
    Parmentier JF, Simonin O, Delsart O (2012) A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed. AIChE J 58(4):1084–1098CrossRefGoogle Scholar
  91. 91.
    Arthur T, Andrews IV, Loezos PN, Sundaresan S (2005) Coarse-grid simulation of gas-particle flows in vertical risers. Ind Eng Chem Res 44:6022–6037CrossRefGoogle Scholar
  92. 92.
    Igci Y, Sundaresan S (2011) Verification of filtered two-fluid models for gas-particle flows in risers. AIChE J 57(10):2691–2707CrossRefGoogle Scholar
  93. 93.
    Igci Y, Pannala S, Benyahia S et al (2012) Validation studies on filtered model equations for gas-particle flows in risers. Ind Eng Chem Res 51:2094–2103CrossRefGoogle Scholar
  94. 94.
    Wang W, Lu BN, Zhang N et al (2010) A review of multiscale CFD for gas-solid CFB modeling. Int J Multiph Flow 36:109–118CrossRefGoogle Scholar
  95. 95.
    Li J, Ge W, Wang W et al (2013) From EMMS model to EMMS paradigm. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  96. 96.
    Li JH, Zhang J, Ge W et al (2004) Multi-scale methodology for complex systems. Chem Eng Sci 59:1687–1700CrossRefGoogle Scholar
  97. 97.
    Zhang Y, Ge W, Li JH (2005) Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling. Chem Eng Sci 60:3091–3099CrossRefGoogle Scholar
  98. 98.
    Zhang Y, Ge W, Wang X et al (2011) Validation of EMMS-based drag model using lattice Boltzmann simulations on GPUs. Particuology 9:365–373CrossRefGoogle Scholar
  99. 99.
    Xiao H (2001) Theoretical and numerical investigation on gas-solid drag model within eulerian scope. Master’s thesis, Tsinghua University, Beijing (in Chinese)Google Scholar
  100. 100.
    Xiao H, Qi H, You C, Xu X (2003) Theoretical model of drag between gas and solid phase. J Chem Ind Eng (Chin) 54(3):311–315 (in Chinese)Google Scholar
  101. 101.
    Qi HY, Li F, Xi B et al (2007) Modeling of drag with the Eulerian approach and EMMS theory for heterogeneous dense gas-solid two-phase flow. Chem Eng Sci 62(6):1670–1681CrossRefGoogle Scholar
  102. 102.
    Li JH, Cheng C, Zhang Z et al (1999) The EMMS model-its application, development and updated concepts. Chem Eng Sci 54(22):5409–5425CrossRefGoogle Scholar
  103. 103.
    Ge W, Chen F, Gao J et al (2007) Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism. Chem Eng Sci 62(13):3346–3377CrossRefGoogle Scholar
  104. 104.
    Ge W, Wang W, Yang N (2011) Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS Paradigm. Chem Eng Sci 66:4426–4458CrossRefGoogle Scholar
  105. 105.
    Cheng C, Ge W (2008) Further analysis on the choking criteria in the EMMS model. Process Chem 4:620–624 (in Chinese)Google Scholar
  106. 106.
    Xu GW, Li JH (1998) Analytical solution of the energy-minimization multi-scale model for gas-solid two-phase flow. Chem Eng Sci 53(7):1349–1366CrossRefGoogle Scholar
  107. 107.
    Ge W, Li JH (2002) Physical mapping of fluidization regimes-the EMMS approach. Chem Eng Sci 57(18):3993–4004CrossRefGoogle Scholar
  108. 108.
    Yang N, Wang W, Ge W et al (2003) CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem Eng J 96(1–3):71–80CrossRefGoogle Scholar
  109. 109.
    Shah MT, Utikar RP, Tade MO et al (2011) Hydrodynamics of an FCC riser using energy minimization multiscale drag model. Chem Eng J 168(2):812–821CrossRefGoogle Scholar
  110. 110.
    Armstrong LM, Luo KH, Gu S (2010) Two-dimensional and three-dimensional computational studies of hydrodynamics in the transition from bubbling to circulating fluidised bed. Chem Eng J 160(1):239–248CrossRefGoogle Scholar
  111. 111.
    Wang W, Li JH (2007) Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level. Chem Eng Sci 62(1–2):208–231CrossRefGoogle Scholar
  112. 112.
    Wang W, Lu B, Dong WG et al (2008) Multi-scale CFD simulation of operating diagram for gas–solid risers. Can J Chem Eng 86(3):448–457CrossRefGoogle Scholar
  113. 113.
    Wang W, Lu B, Li JH (2007) Choking and flow regime transitions: simulation by a multi-scale CFD approach. Chem Eng Sci 62(3):814–819CrossRefGoogle Scholar
  114. 114.
    Zhang N, Lu BN, Wang W et al (2008) Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed. Particuology 6(6):529–539CrossRefGoogle Scholar
  115. 115.
    Li F (2009) Investigations on the turbulent gas-solid two-phase interactions in fluidized desulfurization process. Doctoral dissertation, Tsinghua University, BeijingGoogle Scholar
  116. 116.
    Li F, Chen C, Wang J, Qi H (2011) QL-EMMS drag model and its revision for fluidized dense gas-solid two-phase flow. J Eng Thermophys 1:75–79Google Scholar
  117. 117.
    Wang JW, Ge W, Li JH (2008) Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chem Eng Sci 63:1553–1571CrossRefGoogle Scholar
  118. 118.
    Shah MT, Utikar RP, Tade MO et al (2011) Simulation of gas–solid flows in riser using energy minimization multiscale model: effect of cluster diameter correlation. Chem Eng Sci 66(14):3291–3300CrossRefGoogle Scholar
  119. 119.
    Lu BN, Wang W, Li JH et al (2007) Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chem Eng Sci 62:5487–5494CrossRefGoogle Scholar
  120. 120.
    Hartge E, Ratschow L, Wischnewski R et al (2009) CFD-simulation of a circulating fluidized bed riser. Particuology 7(4):283–296CrossRefGoogle Scholar
  121. 121.
    Wang X, Jiang F, Lei J et al (2011) A revised drag force model and the application for the gas–solid flow in the high-density circulating fluidized bed. Appl Therm Eng 31(14):2254–2261CrossRefGoogle Scholar
  122. 122.
    Nikolopoulos A, Papafotiou D, Nikolopoulos N et al (2010) An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow—part I: numerical formulation. Chem Eng Sci 65(13):4080–4088CrossRefGoogle Scholar
  123. 123.
    Nikolopoulos A, Atsonios K, Nikolopoulos N et al (2010) An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow—part II: numerical implementation. Chem Eng Sci 65(13):4089–4099CrossRefGoogle Scholar
  124. 124.
    Chen C, Li F, Qi HY (2012) Modeling of the flue gas desulfurization in a CFB riser using the Eulerian approach with heterogeneous drag coefficient. Chem Eng Sci 69(1):659–668CrossRefGoogle Scholar
  125. 125.
    Chen C, Li F, Qi HY (2013) An improved EMMS-based drag model for gas-solid flow in CFB risers with a novel sub-model for clusters. In: 8th international conference on multiphase flow, Jeju, KoreaGoogle Scholar
  126. 126.
    Naren PR, Lali AM, Ranade VV (2007) Evaluating EMMS model for simulating high solid flux risers. Chem Eng Res Des 85(A8):1188–1202CrossRefGoogle Scholar
  127. 127.
    Balzer G (2000) Gas-solid flow modeling based on the kinetic theory of granular media: validation, applications and limitations. Powder Technol 113(3):299–309CrossRefGoogle Scholar
  128. 128.
    Enwald H, Peirano E, Almstedt AE (1996) Eulerian two-phase flow theory applied to fluidization. Int J Multiph Flow 22:21–66zbMATHCrossRefGoogle Scholar
  129. 129.
    Wang JW, Ge W (2005) Collisional particle-phase pressure in particle-fluid flows at high particle inertia. Phys Fluids 17(1):281–312MathSciNetzbMATHGoogle Scholar
  130. 130.
    Wei Wang, Youchu Li (2000) Progress of the simulation of particle-fluid two-phase flow. Process Chem 12(2):208–217 (in Chinese)Google Scholar
  131. 131.
    Rizk MA (1993) Mathematical modeling of densely loaded. particle-laden turbulent flows. Atomization Sprays 3:1–27CrossRefGoogle Scholar
  132. 132.
    Lyczkowski RW (2010) The history of multiphase computational fluid dynamics. Ind Eng Chem Res 49(11):5029–5036CrossRefGoogle Scholar
  133. 133.
    Deen NG, Van Sint Annaland M, Van der Hoef MA et al (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62(1):28–44CrossRefGoogle Scholar
  134. 134.
    O’Rourke PJ (1981) Collective drop effects on vaporizing liquid sprays. Ph.D. thesis, Princeton University, USAGoogle Scholar
  135. 135.
    Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77(1):79–87CrossRefGoogle Scholar
  136. 136.
    Kawaguchi T, Tanaka T, Tsuji Y (1998) Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two-and three-dimensional models). Powder Technol 96(2):129–138CrossRefGoogle Scholar
  137. 137.
    Andrews MJ, O’rourke PJ (1996) The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiph Flow 22(2):379–402zbMATHCrossRefGoogle Scholar
  138. 138.
    Snider DM, O’Rourke PJ, Andrews MJ (1998) Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows. Int J Multiph Flow 24(8):1359–1382zbMATHCrossRefGoogle Scholar
  139. 139.
    Patankar NA, Joseph DD (2001) Lagrangian numerical simulation of particulate flows. Int J Multiph Flow 27(10):1685–1706zbMATHCrossRefGoogle Scholar
  140. 140.
    Snider DM (2001) An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J Comput Phys 170(2):523–549zbMATHCrossRefGoogle Scholar
  141. 141.
    O’Rourke PJ, Zhao PP, Snider D (2009) A model for collisional exchange in gas/liquid/solid fluidized beds. Chem Eng Sci 64(8):1784–1797CrossRefGoogle Scholar
  142. 142.
    Breault RW (2012) An analysis of clustering flows in a CFB riser. Powder Technol 220:79–87CrossRefGoogle Scholar
  143. 143.
    Li JH, Kuipers JAM (2003) Gas-particle interactions in dense gas-fluidized beds. Chem Eng Sci 58(3):711–718CrossRefGoogle Scholar
  144. 144.
    Du W, Bao X, Xu J et al (2006) Computational fluid dynamics (CFD) modeling of spouted bed: assessment of drag coefficient correlations. Chem Eng Sci 61(5):1401–1420CrossRefGoogle Scholar
  145. 145.
    Zhang Y, Reese JM (2003) The drag force in two-fluid models of gas–solid flows. Chem Eng Sci 58(8):1641–1644CrossRefGoogle Scholar
  146. 146.
    Helland E, Occelli R, Tadrist L (2000) Numerical study of cluster formation in a gas–particle circulating fluidized bed. Powder Technol 110(3):210–221zbMATHCrossRefGoogle Scholar
  147. 147.
    Sundaresan S, Beds CF (2011) Reflections on mathematical models and simulation of gas-particle flows. In: Tenth international conference on circulating fluidized beds and fluidization technology-CFB-10, Sunriver, Oregon, USA, pp 21–40Google Scholar
  148. 148.
    Benyahia S, Galvin JE (2010) Estimation of numerical errors related to some basic assumptions in discrete particle methods. Ind Eng Chem Res 49(21):10588–10605CrossRefGoogle Scholar
  149. 149.
    O’Rourke PJ, Snider DM (2010) An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chem Eng Sci 65(22):6014–6028CrossRefGoogle Scholar
  150. 150.
    Zheng K (2012) A hybrid approach to particle breakage simulation in dense particulate flows. Master thesis, Tsinghua University, Beijing (in Chinese)Google Scholar
  151. 151.
    Karimipour S, Pugsley T (2012) Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles. Powder Technol 220:63–69CrossRefGoogle Scholar
  152. 152.
    Snider DM, Clark SM, O’Rourke PJ (2011) Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers. Chem Eng Sci 66(6):1285–1295CrossRefGoogle Scholar
  153. 153.
    Abbasi A, Ege PE, De Lasa HI (2011) CPFD simulation of a fast fluidized bed steam coal gasifier feeding section. Chem Eng J 174(1):341–350CrossRefGoogle Scholar
  154. 154.
    Chen C, Werther J, Heinrich S et al (2012) CPFD simulation of circulating fluidized bed risers. Powder Technol 235:238–247CrossRefGoogle Scholar
  155. 155.
    Li F, Song F, Benyahia S et al (2012) MP-PIC simulation of CFB riser with EMMS-based drag model. Chem Eng Sci 82:104–113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Tsinghua UniversityBeijingChina

Personalised recommendations