Skip to main content

Technology Developments of Micro Fluid Dispensing

  • Conference paper
  • First Online:
Proceedings of the 2015 Chinese Intelligent Systems Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE))

Abstract

Micro fluid dispensing technology is widely applied in electronics packaging, micro electromechanical system assembly, and biotechnology experiments, in which pl or nl amount of fluid materials (such as solder paste, adhesive, and DNA solution) are delivered controllably for the purpose of conducting, bonding, sealing, etc. This paper reviewed the latest developments as well as advantages and limits of three kinds of micro dispensing technology, which are needle nozzle type, integrated nozzle type and pin transfer type, classified according to the configuration of the nozzle unit. The measuring methods for the micro droplets are also briefly introduced in the article. Our work of dispensing less than 3 pl adhesive in an microassembly task is briefly introduced, and the trends and challenges of micro fluid dispensing are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer W (2001) Micro dispensing of adhesives and other polymers, IEEE, pp 35–39

    Google Scholar 

  2. Tan KK, Putra AS (2005) Microdispensing system for industrial applications, IEEE, pp 1186–1191

    Google Scholar 

  3. Geyl L, Amberg G, van der Wijngaart W, Stemme G (2006) Study of the flight of small liquid droplets through a thin liquid film for picoliter liquid transfer. IEEE, MEMS, Istanbul, pp 24–27

    Google Scholar 

  4. Zhang J, Jia H, Zhang J (2010) A fluid dynamic analysis in the chamber and nozzle for a jetting dispenser design. In: 2010 11th international conference on electronic packaging technology and high density packaging

    Google Scholar 

  5. McGuire S, Fisher C, Holl M, Meldrum D (2008) A novel pressure-driven piezodispenser for nanoliter volumes. Rev Sci Instrum 79(8):086111

    Google Scholar 

  6. Quinones H, Babiarz A, Fang L (2003) Jetting technology: a way of the future in dispensing

    Google Scholar 

  7. Li J, Deng G (2004) Technology development and basic theory study of fluid dispensing-a review. In: Proceeding of HDP’04, pp 198–205

    Google Scholar 

  8. Hobbs ED, Pisano AP (2003) Micro capillary-force driven fluidic accumulator/pressure source. In: IEEE Transducers’03 the 12th international conference on solid state sensors, actuators and microsystems, Boston, USA, June 2003, pp 155–158

    Google Scholar 

  9. Fukuda T, Arai F (2000) Prototyping design and automation of micro/nano manipulation system. In: Proceedings of the 2000 IEEE international conference on robotics and automation. IEEE, San Francisco, USA, pp 192–197

    Google Scholar 

  10. Chen XB, Schoenau G, Zhang WJ (2000) Modeling of time-pressure fluid dispensing process. IEEE Trans Electron Packag Manuf 23(4):300–305

    Article  Google Scholar 

  11. Fratila D, Palfinger W, Bou S, Almansa A, Mann W et al (2007) A method for measurement and characterization of microdispensing process. In: Proceedings of the 2007 IEEE international symposium on assembly and manufacturing Ann Arbor. IEEE, Michigan, USA, pp 209–214

    Google Scholar 

  12. Chen XB, Ke H (2006) Effects of fluid properties on dispensing processes for electronics packaging. IEEE Trans Electron Packag Manuf 29(2):75–82

    Article  Google Scholar 

  13. Chen XB, Li MG, Cao N (2009) Modeling of the fluid volume transferred in contact dispensing processes. IEEE Trans Electron Packag Manuf 32(3):133–137

    Article  Google Scholar 

  14. Yao Y, Lu S, Liu Y (2011) Numerical simulation of droplet formation in contact micro-liquid dispensing. In: 2011 third international conference on measuring technology and mechatronics automation. IEEE, pp 709–712

    Google Scholar 

  15. Peng J, Guiling D (2007) Numerical simulations of 3D flow in the archimedes pump and analysis of its influence on dispensing quality. In: Proceedings of HDP’07, IEEE

    Google Scholar 

  16. Takagi M, Saito K, Frederick C, Nikroo A, Cook R (2007) Fabrication and attachment of polyimide fill tubes to plastic NIF capsules

    Google Scholar 

  17. Ergenc AF, OlgacN (2007) A new micro injector and an optical sensor. In: Proceedings of the 2007 American control conference Marriott Marquis hotel at Times Square. IEEE, New York, USA, pp 2905–2909

    Google Scholar 

  18. Kuncova J, Kallio P (2004) Challenges in capillary pressure microinjection

    Google Scholar 

  19. Wang WH, Liu XY, Sun Y (2007) Contact detection in microrobotic manipulation. Int J Robot Res 26(8):821–828

    Article  Google Scholar 

  20. Matsuno Y, Nkajima M, Kojima M, Tanaka-Takiguchi Y, Takiguchi K, Kousuke et al (2009) Pico-liter injection control to individual nano-liter solution coated by lipid layer. IEEE, pp 249–254

    Google Scholar 

  21. Wang WH, Hewett D, Hann CE, Chase JG, Chen XQ (2008) Machine vision and image processing for automated cell injection. IEEE, pp 309–314

    Google Scholar 

  22. Wang WH, Liu XY, Yu S (2009) High-throughput automated injection of individual biological cells. IEEE Trans Autom Sci Eng 6(2):209–219

    Google Scholar 

  23. Oeftering R (1999) Acoustic liquid manipulation. In: IEEE ultrasonic symposium, pp 675–678

    Google Scholar 

  24. Araz MK, Lal A (2010) Acoustic mixing and chromatography in a PZT driven sillicon microfluidic actuator. IEEE, pp 1111–1114

    Google Scholar 

  25. Gaugel T, Bechtel S, Neumann-Rodekirch J (2001) Advanced micro-dispensing system for conductive adhesives. IEEE, pp 40–45

    Google Scholar 

  26. Ahamed MJ, Gubarenko SI, Ben-Mrad R, Sullivan P (2010) A piezoactuated driplet-dispensing microfluidic chip. IEEE J Microelectromech Syst 19(1):110–119

    Google Scholar 

  27. Strobl CJ, von Guttenberg Z, Wixforth A (2004) Nano- and pico-dispensing of fluids on plannar substrates using SAW. IEEE Trans Ultrason Ferroelectr Freq Control 51(11):1432–1436

    Google Scholar 

  28. Ren H, Fair RB (2002) Micro/nano liter droplet formation and dispensing by capacitance metering and electrowetting actuation, IEEE, pp 369–372

    Google Scholar 

  29. de Heij B, Steinert C, Sandmaier H, Zengerle R (2002) A tunable and highly-parallel picoliter-dispenser based on direct liquid displacement. IEEE, pp 706–709

    Google Scholar 

  30. Hirata S, Ishii Y, Matoba H, Inui T (1996) An ink-jet head using diaphragm microactuator. IEEE, pp 418–423

    Google Scholar 

  31. Eddington DT, Beebe DJ (2002) A hydrogel actuated microdispensing device. In: Proceedings of the second joint EMBS/BMES conference. IEEE, Houston, USA, pp 1824–1825

    Google Scholar 

  32. Roxhed N, Rydholm S, Samel B, van der Wijngaart W, Griss P, Stemme G (2004) Low cost device for precise microliter range liquid dispensing. IEEE, pp 326–329

    Google Scholar 

  33. Kang TG, Cho YH (2005) A four-bit digital microinjector using microheater array for adjusting the ejected droplet volume. IEEE J Microelectromech Syst 14(5):1031–1038

    Google Scholar 

  34. Kang TG, Cho YH (2003) Droplet volume adjustable microinjectors using a microheater array. IEEE, pp 690–693

    Google Scholar 

  35. Koltay P, Bohl B, Taoufik S, Steger R, Messner S et al (2003) Dispensing Well Plate (DWP): a highly integrated nanoliter dispensing system. IEEE Transducers’03 the 12th international conference on solid state sensors, actuators and microsystems, Boston, USA, June 2003, pp 16–19

    Google Scholar 

  36. Cleveland PH, Koutz PJ (2005) Nanoliter dispensing for uHTS using pin tools. Assay Drug Dev Technol 3(2):213–225

    Article  Google Scholar 

  37. Ernst A, Streule W, Zengerle R, Koltay P (2009) Quantitative volume determination of dispensed nanoliter droplets on the fly. IEEE Transducers, Denver, USA, pp 1750–1753

    Google Scholar 

  38. Daoura MJ, Meldrum DR (1999) Precise automated control of fluid volumes inside glass capillaries. IEEE J Microelectromech Syst 8(1):71–77

    Article  Google Scholar 

  39. Mutschler K, Ernst A, Paust N, Zengerle R, Koltay P (2011) Capacitive detection of nanoliter droplets on the fly-investigation of electric field during droplet formation using CFD-simulation. Transducers’11, Beijing, China, June 2011, pp 430–433

    Google Scholar 

  40. Li F, Xu D, Zhang Z, Shi Y (2013) Realization of an automated microassembly task involving micro adhesive bonding. Int J Autom Comput 10(6):545–551

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant NO.61175111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fudong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, F., Xu, D., Zhang, T., Yang, Y. (2016). Technology Developments of Micro Fluid Dispensing. In: Jia, Y., Du, J., Li, H., Zhang, W. (eds) Proceedings of the 2015 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48365-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48365-7_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48363-3

  • Online ISBN: 978-3-662-48365-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics