Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 602 Accesses

Abstract

Not long after the laser was invented, optical nonlinearity was used to generate high-intensity radiation at new wavelength. In 1965, Wang and Racette discovered that new wavelength laser can be generated by two beams of light transmitted in a nonlinear crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.C. Wang, G.W. Racette, Measurement of parametric gain accompanying optical difference frequency generation. Appl. Phys. Lett. 6(8), 169–171 (1965)

    Article  Google Scholar 

  2. J.A. Giordmaine, R.C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14(24), 973–976 (1965)

    Article  Google Scholar 

  3. M.H. Dunn, M. Ebrahimzadeh, Parametric generation of tunable light from continuous wave to femtosecond pulses. Science 286(5444), 1513–1517 (1999)

    Article  Google Scholar 

  4. D.K. Serkland, G.D. Bartolini, A. Agarwal, P. Kumar, W.L. Kath, Pulsed degenerate optical parametric oscillator based on a nonlinear-fiber Sagnac interferometer. Opt. Lett. 23(10), 795–797 (1998)

    Article  Google Scholar 

  5. M.E. Marhic, K.K.Y. Wong, L.G. Kazovsky, T.-E. Tsai, Continuous-wave fiber optical parametric oscillator. Opt. Lett. 27(16), 1439–1441 (2002)

    Article  Google Scholar 

  6. Y. Zhou, K.K.Y. Cheung, S. Yang, P.C. Chui, K.K.Y. Wong, Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber. Opt. Lett. 34(7), 989–991 (2009)

    Article  Google Scholar 

  7. S. Yang, Y. Zhou, J. Li, K.K.Y. Wong, Actively mode-locked fiber optical parametric oscillator. IEEE J. Sel. Top. Quantum Electron. 15(2), 393–398 (2009)

    Article  Google Scholar 

  8. J.E. Sharping, M. Fiorentino, P. Kumar, R.S. Windeler, Optical parametric oscillator based on four-wave mixing in microstructure fiber. Opt. Lett. 27(19), 1675–1677 (2002)

    Article  Google Scholar 

  9. C.J.S. de Matos, J.R. Taylor, K.P. Hansen, Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber. Opt. Lett. 29(9), 983–985 (2004)

    Article  Google Scholar 

  10. Y. Deng, Q. Lin, F. Lu, G.P. Agrawal, W.H. Knox, Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber. Opt. Lett. 30(10), 1234–1236 (2005)

    Article  Google Scholar 

  11. J.E. Sharping, J.R. Sanborn, M.A. Foster, D. Broaddus, A.L. Gaeta, Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator. Opt. Express 16(22), 18050–18056 (2008)

    Article  Google Scholar 

  12. M.E. Marhic, K.K.Y. Wong, L.G. Kazovsky, Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers. IEEE J. Sel. Top. Quant. Electron. 10(5), 1133–1141 (2004)

    Google Scholar 

  13. J.D. Harvey, R. Leonhardt, S. Coen, G.K.L. Wong, J.C. Knight, W.J. Wadsworth, P.St.J. Russell, Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. Opt. Lett. 28(22), 2225–2227 (2003)

    Google Scholar 

  14. K.C. Byron, M.A. Bedgood, A. Finey, C. McGauran, S. Savory, I. Watson, Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres. Electron. Lett. 28(18), 1712–1714 (1992)

    Article  Google Scholar 

  15. G. Ghosh, H. Yajima, Pressure-dependent Sellmeier coefficients and material dispersions for silica fiber glass. J. Lightwave Technol. 16(11), 2002 (1998)

    Article  Google Scholar 

  16. L. Velazquez-Ibarra, A. Diez, E. Silvestre, M.V. Andres, M.A. Martinez, J.L. Lucio, Pump power dependence of four-wave mixing parametric wavelengths in normal dispersion photonic crystal fibers. IEEE Photon. Technol. Lett. 23(14), 1010–1012 (2011)

    Article  Google Scholar 

  17. J. Lasri, P. Devgan, R. Tang, J.E. Sharping, P. Kumar, A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime. IEEE Photon. Technol. Lett. 15(8), 1058–1060 (2003)

    Article  Google Scholar 

  18. R.H. Stolen, C. Lin, R.K. Jain, A time-dispersion-tuned fiber Raman oscillator. Appl. Phys. Lett. 30(7), 340–342 (2008)

    Article  Google Scholar 

  19. Y. Zhou, K.K.Y. Cheung, S. Yang, P.C. Chui, K.K.Y. Wong, A time-dispersion-tuned picosecond fiber-optical parametric oscillator. IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009)

    Article  Google Scholar 

  20. L. Zhang, S. Yang, P. Li, X. Wang, D. Gou, W. Chen, W. Luo, H. Chen, M. Chen, S. Xie, An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region. Opt. Express 21(21), 25167–25173 (2013)

    Article  Google Scholar 

  21. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135 (2006)

    Article  Google Scholar 

  22. L. Zhang, S. Yang, X. Wang, D. Gou, X. Li, H. Chen, M. Chen, S. Xie, Widely tunable all-fiber optical parametric oscillator based on a photonic crystal fiber pumped by a picosecond ytterbium-doped fiber laser. Opt. Lett. 38(22), 4534–4537 (2013)

    Article  Google Scholar 

  23. L. Zhang, S. Yang, H. Chen, M. Chen, S. Xie, Broadly time-dispersion-tuned narrow linewidth all-fiber-integrated optical parametric oscillator, in Optical Fiber Communication Conference, OFC, 2014, W4E.2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, L. (2016). Widely Tunable Optical Parametric Oscillator (OPO) Based on PCF. In: Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48360-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48360-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48359-6

  • Online ISBN: 978-3-662-48360-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics