Skip to main content

New Wavelength Generation Based on PCF with Two Zero-Dispersion Wavelengths (TZDWs)

  • Chapter
  • First Online:
Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Since the PCF has flexible cladding structures, the simulation method for conventional optical fibers cannot be used for the evaluation of the PCF characteristics accurately. In recent years, several methods have been developed to improve the numerical precision, such as the plane wave expansion method, beam propagation method, finite element method, and multipole method. In this thesis, we mainly use the multipole method to estimate the fiber performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, L.C. Botten, Multipole method for microstructured optical fibers. I. Formulation. J. Opt. Soc. Am. B 19(10), 2322–2330 (2002)

    Article  Google Scholar 

  2. B.T. Kuhlmey, T.P. White, G. Renversez, D. Maystre, L.C. Botten, C. Martijn de Sterke, R.C. McPhedran, Multipole method for microstructured optical fibers. II. Implementation and results. J. Opt. Soc. Am. B 19(10), 2331–2340 (2002)

    Article  Google Scholar 

  3. M.E. Marhic, K.K.Y. Wong, L.G. Kazovsky, Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers. IEEE J. Sel. Top. Quant. Electron 10(5), 1133–1141 (2004)

    Article  Google Scholar 

  4. G. Wong, A. Chen, S.G. Murdoch, R. Leonhardt, J.D. Harvey, N.Y. Joly, J.C. Knight, W.J. Wadsworth, P.J. Russell, Continuous-wave tunable optical parametric generation in a photonic-crystal fiber. J. Opt. Soc. Am. B 22(11), 2505–2511 (2005)

    Article  Google Scholar 

  5. J.D. Harvey, R. Leonhardt, S. Coen, G.K.L. Wong, J.C. Knight, W.J. Wadsworth, P. Russell, Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. Opt. Let. 28(22), 2225–2227 (2003)

    Article  Google Scholar 

  6. T.V. Andersen, K.M. Hilligsøe, C.K. Nielsen, J. Thøgersen, K.P. Hansen, S.R. Keiding, J.L. Larsen, Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths. Opt. Express 12(17), 4113–4122 (2004)

    Article  Google Scholar 

  7. T.H. Tuan, T. Cheng, K. Asano, Z. Duan, W. Gao, D. Deng, T. Suzuki, Y. Ohishi, Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths. Opt. Express 21(17), 20303–20312 (2013)

    Article  Google Scholar 

  8. L. Zhang, S.-G. Yang, Y. Han, H.-W. Chen, M.-H. Chen, S.-Z. Xie, Optical parametric generation with two pairs of gain bands based on a photonic crystal fiber. Opt. Commun. 300, 22–26 (2013)

    Article  Google Scholar 

  9. G.P. Agrawal, Nonlinear Fiber Optics (Springer, Berlin Heidelberg, 2000)

    Book  MATH  Google Scholar 

  10. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.J. Russell, F.G. Omenetto, A. Efimov, A.J. Taylor, Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres. Nature 424(6948), 511–515 (2003)

    Article  Google Scholar 

  11. N. Akhmediev, M. Karlsson, Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51(3), 2602–2607 (1995)

    Article  Google Scholar 

  12. B.H. Chapman, J.C. Travers, S.V. Popov, A. Mussot, A. Kudlinski, Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions. Opt. Express 18(24), 24729–24734 (2010)

    Article  Google Scholar 

  13. D.R. Austin, C.M. de Sterke, B.J. Eggleton, T.G. Brown, Dispersive wave blue-shift in supercontinuum generation. Opt. Express 14(25), 11997–12007 (2006)

    Article  Google Scholar 

  14. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, A. Tünnermann, Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths. Opt. Express 13(23), 9556–9569 (2005)

    Article  Google Scholar 

  15. V. Husakou, J. Herrmann, Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses. Appl. Phys. B Lasers Opt. 77(2–3), 227–234 (2003)

    Article  Google Scholar 

  16. M. Frosz, P. Falk, O. Bang, The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength. Opt. Express 13(16), 6181–6192 (2005)

    Article  Google Scholar 

  17. G. Chang, L.J. Chen, F.X. Kärtner, Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation. Opt. Let. 35(14), 2361–2363 (2010)

    Article  Google Scholar 

  18. J. Yuan, X. Sang, C. Yu, Y. Han, G. Zhou, S. Li, L. Hou, Highly efficient and broadband Cherenkov radiation at the visible wavelength in the fundamental mode of photonic crystal fiber. IEEE Photon. Technol. Lett. 23(12), 786–788 (2011)

    Article  Google Scholar 

  19. H. Tu, S.A. Boppart, Optical frequency up-conversion by supercontinuum-free widely unable fiber optic Cherenkov radiation. Opt. Express 17(12), 9858–9872 (2009)

    Article  Google Scholar 

  20. H. Tu, S.A. Boppart, Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers. Opt. Express 17(20), 17983–17988 (2009)

    Article  Google Scholar 

  21. S.P. Stark, A. Podlipensky, N.Y. Joly, P.J. Russell, Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber. J. Opt. Soc. Am. B 27(3), 592–598 (2010)

    Article  Google Scholar 

  22. M. Erkintalo, G. Genty, J.M. Dudley, Giant dispersive wave generation through soliton collision. Opt. Lett. 35(5), 658–660 (2010)

    Article  Google Scholar 

  23. D.V. Skryabin, F. Luan, J.C. Knight, P.J. Russell, Soliton self-frequency shift cancellation in photonic crystal fibers. Science 301(5640), 1705–1708 (2003)

    Article  Google Scholar 

  24. L. Zhang, S.-G. Yang, Y. Han, H–.W. Chen, M–.H. Chen, S–.Z. Xie, Simultaneous generation of tunable giant dispersive waves in the visible and mid-infrared regions based on photonic crystal fibers. J. Opt. 15(7), 075201 (2013)

    Article  Google Scholar 

  25. L. Zhang, S. Yang, H. Chen, M. Chen, S. Xie, in Wavelength-tunable red-shift Cherenkov radiation in photonic crystal fibers for mid-infrared wavelength generation. 18th Opto-Electronics and Communications Conference, OECC: 2013, WS4–4

    Google Scholar 

  26. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135 (2006)

    Article  Google Scholar 

  27. J. Yuan, X. Sang, C. Yu, K. Wang, B. Yan, X. Shen, Y. Han, G. Zhou, S. Li, L. Hou, Widely wavelength-tunable two-colored solitons and small spectral component for broadband mid-infrared wavelength generation in a highly birefringent photonic crystal fiber. IEEE Photon. Technol. Lett. 24(8), 670–672 (2012)

    Article  Google Scholar 

  28. S.P. Stark, J.C. Travers, P.S.J. Russell, Extreme supercontinuum generation to the deep UV. Opt. Lett. 37(5), 770–772 (2012)

    Article  Google Scholar 

  29. T. Sylvestre, A.R. Ragueh, M.W. Lee, B. Stiller, G. Fanjoux, B. Barviau, A. Mussot, A. Kudlinski, Black-light continuum generation in a silica-core photonic crystal fiber. Opt. Lett. 37(2), 130–132 (2012)

    Article  Google Scholar 

  30. P.A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, P. Nérin, White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Opt. Express 12(19), 4366–4371 (2004)

    Article  Google Scholar 

  31. Y. Han, L.-T. Hou, J.-H. Yuan, C.-M. Xia, G.-Y. Zhou, Ultraviolet continuum generation in the fundamental mode of photonic crystal fibers. Chin. Phys. Lett. 29(1), 014201 (2012)

    Article  Google Scholar 

  32. L. Zhang, S. Yang, H. Chen, M. Chen, S. Xie, in Ultraviolet-shift supercontinuum generation by cross-phase modulation in photonic crystal fiber. Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO: 2013, JW2A.13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, L. (2016). New Wavelength Generation Based on PCF with Two Zero-Dispersion Wavelengths (TZDWs) . In: Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48360-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48360-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48359-6

  • Online ISBN: 978-3-662-48360-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics