Skip to main content

An Experimental Evaluation of the Best-of-Many Christofides’ Algorithm for the Traveling Salesman Problem

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant on the well-known Christofides’ algorithm for the TSP, called the Best-of-Many Christofides’ algorithm. The algorithm involves sampling a spanning tree from the solution to the standard LP relaxation of the TSP, and running Christofides’ algorithm on the sampled tree. In this paper we perform an experimental evaluation of the Best-of-Many Christofides’ algorithm to see if there are empirical reasons to believe its performance is better than that of Christofides’ algorithm. In our experiments, all of the implemented variants of the Best-of-Many Christofides’ algorithm perform significantly better than Christofides’ algorithm; an algorithm that samples from a maximum entropy distribution over spanning trees seems to be particularly good.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, H.C.: Approximation Algorithms for Traveling Salesman Problems Based on Linear Programming Relaxations. Ph.D. thesis, Department of Computer Science, Cornell University (August 2012)

    Google Scholar 

  2. An, H.C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s-t path TSP. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pp. 875–886 (2012)

    Google Scholar 

  3. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde 03.12.19. http://www.math.uwaterloo.ca/tsp/concorde/index.html

  4. Asadpour, A., Goemans, M.X., Madry, A., Oveis Gharan, S., Saberi, A.: An O(logn/loglogn)-approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 379–389 (2010)

    Google Scholar 

  5. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 575–584 (2010), see full version at arxiv.0909:4348

    Google Scholar 

  6. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem. Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976)

    Google Scholar 

  7. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press, Oxford (2011)

    MATH  Google Scholar 

  8. Frieze, A., Galbiati, G., Maffioli, F.: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12, 23–39 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Genova, K., Williamson, D.P.: An experimental evaluation of the Best-of-Many Christofides’ algorithm for the traveling salesman problem, CORR abs/1506.07776 (2015)

    Google Scholar 

  10. Gurobi Optimization: Gurobi 5.6.3 (2014). http://www.gurobi.com

  11. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variants, pp. 369–443. Kluwer Academic Publishers (2002)

    Google Scholar 

  12. Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation 1, 43–67 (2009). http://pub.ist.ac.at/~vnk/software.html

  13. Kunegis, J.: KONECT – the Koblenz network collection. In: Proceedings of the International Web Observatory Workshop, pp. 1343–1350 (2013)

    Google Scholar 

  14. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Operations Research 21, 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Acad. Sci. Hungar. 28, 129–138 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 560–569 (2011)

    Google Scholar 

  17. Mucha, M.: 13/9-approximation for graphic TSP. Theory of Computing Systems 55, 640–657 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nagamochi, H., Ibaraki, T.: Deterministic Õ(mn) time edge-splitting in undirected graphs. Journal of Combinatorial Optimization 1, 5–46 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oveis Gharan, S.: New Rounding Techniques for the Design and Analysis of Approximation Algorithms. Ph.D. thesis, Department of Management Science and Engineering, Stanford University (May 2013)

    Google Scholar 

  20. Oveis Gharan, S.: Personal communication (2014)

    Google Scholar 

  21. Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 550–559 (2011)

    Google Scholar 

  22. Reinelt, G.: TSPLIB – a traveling salesman problem library. ORSA Journal on Computing, 376–384 (1991)

    Google Scholar 

  23. Rohe, A.: Instances found at http://www.math.uwaterloo.ca/tsp/vlsi/index.html (Accessed December 16, 2014)

  24. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34, 597–629 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Genova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Genova, K., Williamson, D.P. (2015). An Experimental Evaluation of the Best-of-Many Christofides’ Algorithm for the Traveling Salesman Problem. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics