Skip to main content

Node-Balancing by Edge-Increments

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

  • 2276 Accesses

Abstract

Suppose you are given a graph G = (V,E) with a weight assignment w:V → ℤ and that your objective is to modify w using legal steps such that all vertices will have the same weight, where in each legal step you are allowed to choose an edge and increment the weights of its end points by 1.

In this paper we study several variants of this problem for graphs and hypergraphs. On the combinatorial side we show connections with fundamental results from matching theory such as Hall’s Theorem and Tutte’s Theorem. On the algorithmic side we study the computational complexity of associated decision problems.

Our main results are a characterization of the graphs for which any initial assignment can be balanced by edge-increments and a strongly polynomial-time algorithm that computes a balancing sequence of increments if one exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anstee, R.P.: A polynomial algorithm for b-matchings: an alternative approach. Information Processing Letters 24(3), 153–157 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berge, C.: Regularisable graphs i. Discrete Mathematics 23(2), 85–89 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cunningham, W.H., Marsh, A.B.: A primal algorithm for optimum matching. In: Polyhedral Combinatorics, pp. 50–72. Springer (1978)

    Google Scholar 

  4. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the National Bureau of Standards 69, 125–130 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Harold, N.: Gabow. Data structures for weighted matching and nearest common ancestors with linking. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 434–443. Society for Industrial and Applied Mathematics (1990)

    Google Scholar 

  7. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph matching problems. Journal of the ACM (JACM) 38(4), 815–853 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerards, A.M.H.: Matching. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Models. Handbooks in Operations Research and Management Science, vol. 7, pp. 135–224. North-Holland, Amsterdam (1995)

    Chapter  Google Scholar 

  9. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. J. ACM 36(4), 873–886 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopcroft, J.E., Karp, R.M.: An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, NY (1972)

    Chapter  Google Scholar 

  12. Karzanov, A.V.: On finding a maximum flow in a network with special structure and some applications. Matematicheskie Voprosy Upravleniya Proizvodstvom 5, 81–94 (1973)

    Google Scholar 

  13. Madry, A.: Navigating central path with electrical flows: From flows to matchings, and back. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 253–262. IEEE (2013)

    Google Scholar 

  14. Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4(4), 414–424 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency (3 volumes). Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  16. Tutte, W.T.: The factors of graphs. Canad. J. Math. 4(3), 314–328 (1952)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenbrand, F., Moran, S., Pinchasi, R., Skutella, M. (2015). Node-Balancing by Edge-Increments. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics