Skip to main content

Unanswered Questions in the Evolution of Biomineralisation

  • Chapter
Isotopic Landscapes in Bioarchaeology

Abstract

Organisms have been building hard parts since the Late Precambrian. In fact representatives of all Kingdoms are able to biomineralise in the form of granules, plates, tubes, shells , bones or teeth. Biomineralised structures are mainly composites consisting of a mineralised component dispersed in an organic matrix and show an extraordinary diversity of microstructural arrangements and combinations. This wealth of diversity has stimulated a huge amount of interest and research, attracting the attention of biologists, materials scientists, archaeologists and palaeontologists and is increasingly using highly sophisticated techniques and interdisciplinary research to delve into the intricacies (e.g. DiMasi and Gower 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balthasar U, Cusack M, Faryma L, Chung P, Holmer LE, Jin J, Percival IG, Popov LE (2011) Relic aragonite from Ordovician-Silurian brachiopods: implications for the evolution of calcification. Geology 39:967–970

    Article  Google Scholar 

  • Bell DB, Jung SJA, Kroon D, Lourens LJ, Hodell DA (2014) Local and regional trends in Plio-Pleistocene δ18O records from benthic foraminifera. Geochem Geophys Geosyst 15:3304–3321

    Article  Google Scholar 

  • Bengtson S (1994) The advent of animal skeletons. In: Bengtson S (ed) Early life on earth, Nobel symposium 84. Columbia University Press, New York, NY, pp 412–425

    Google Scholar 

  • Bengtson S (2004) Early skeletal fossils. In: Lipps H, Wagooner BM (eds) Neoproterozoic–Cambrian biological revolutions, vol 10. The Paleontological Society Papers, Austin, pp 67–77

    Google Scholar 

  • Bengtson S, Yue Z (1992) Predatorial borings in late Precambrian mineralized exoskeletons. Science 257:267–369

    Article  Google Scholar 

  • Berland S, Delattre O, Borzeix S, Catonné Y, Lopez E (2005) Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 26:2767–2773

    Article  Google Scholar 

  • Bieler R, Mikkelsen PM, Collins TM, Glover EA, González VL, Graf DL, Harper EM, Healy J, Kawauchi GY, Sharma PP, Staubach S, Strong EE, Taylor JD, Tëmkin I, Zardus JD, Clark S, Guzmán A, McIntyre E, Sharp P, Giribet G (2014) Investigating the bivalve tree of life – an exemplar-based approach combining molecular and novel morphological characters. Invertebr Syst 28:32–115

    Article  Google Scholar 

  • Boggild OB (1930) The shell structure of the molluscs. Det Kongelige Danske Videnskabernes Selskrabs Skrifter, Naturvidenskabelig og Mathematisk Afdeling 2:231–326

    Google Scholar 

  • Botting JP, Butterfield NJ (2005) Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proc Natl Acad Sci U S A 102:1554–1559

    Article  Google Scholar 

  • Braithwaite CJR, Taylor JD, Glover EA (2000) Marine carbonate cements, biofilms, biomineralization, and skeletogenesis: some bivalves do it all. J Sediment Res 70:1129–1138

    Article  Google Scholar 

  • Branson O, Redfern SAT, Tyliszczak T, Sadekov A, Langer G, Kimoto K, Elderfield H (2013) The coordination of Mg in foraminiferal calcite. Earth Planet Sci Lett 383:134–141

    Article  Google Scholar 

  • Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476

    Article  Google Scholar 

  • Butterfield NJ (2009) Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:1–7

    Article  Google Scholar 

  • Canfield DE, Poulton SW, Narbone GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95

    Article  Google Scholar 

  • Carter JG (1980) Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 69–113

    Chapter  Google Scholar 

  • Carter JG (1990) Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand and Reinhold, New York

    Google Scholar 

  • Carter JG, Schneider JA (1997) Condensing lenses and shell microstructure in Corculum (Mollusca, Bivalvia). J Paleontol 71:56–61

    Google Scholar 

  • Carter JG, Barrera E, Tevesz MJS (1998) Thermal potentiation and mineralogical evolution in the Bivalvia (Mollusca). J Paleontol 72:991–1010

    Article  Google Scholar 

  • Checa AG, Harper EM (2010) Spikey bivalves: intra-periostracal crystal growth in anomalodesmatans. Biol Bull 219:231–248

    Google Scholar 

  • Checa AG, Jiménez-López C, Rodríguez-Navarro A, Machado JP (2007) Precipitation of aragonite by calcitic bivalves in Mg-enriched marine waters. Mar Biol 150:819–827

    Article  Google Scholar 

  • Checa AG, Salas C, Harper EM, Bueno-Pérez J (2014) Early stage biomineralization in the periostracum of the ‘living fossil’ bivalve Neotrigonia. PLoS One 9(2):e90033

    Article  Google Scholar 

  • Cohen PA, Schopf JW, Butterfield NJ, Kudryavtsev AB, MacDonald FA (2011) Phosphate biomineralization in mid-Neoproterozoic protists. Geology 39:539–542

    Article  Google Scholar 

  • Conway Morris S (1977) Fossil priapulid worms. Spec Pap Palaeontol 20:1–95

    Google Scholar 

  • Conway Morris S, Jenkins RJF (1985) Healed injuries in early Cambrian trilobites from South Australia. Alcheringa 9:167–177

    Article  Google Scholar 

  • Cook PJ, Shergold JH (1984) Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary. Nature 308:231–236

    Article  Google Scholar 

  • Daley AC, Paterson JR, Edgecombe GD, García-Bellido DC, Jago JB (2013) New anatomical information on Anomalocaris from the Cambrian Emu Bay Shale of South Australia and a reassessment of it inferred predatory habits. Palaeontology 56:971–990

    Google Scholar 

  • Daniel MJ, Boyden CR (1975) Diurnal variations in physico-chemical conditions within intertidal rockpools. Field Stud 4:161–176

    Google Scholar 

  • De Paula SM, Huila MFG, Araki K, Toma HE (2010) Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineata shells into hydroxyapatite bioceramic materials in phosphate media. Micron 41:983–989

    Article  Google Scholar 

  • DiMasi E, Gower LB (eds) (2014) Biomineralization sourcebook. CRC Press, Boca Raton, FL

    Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Gál J, Horváth G, Clarkson EN, Haiman O (2000) Image formation by bifocal lenses in a trilobite eye? Vision Res 40:843–853

    Article  Google Scholar 

  • Harper EM (1997) The molluscan periostracum: an important constraint in bivalve evolution. Palaeontology 40:71–97

    Google Scholar 

  • Harper EM (2000) Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? J Zool 251:179–186

    Article  Google Scholar 

  • Hasse B (2002) A crystallographic study of the love dart (Gypsobelum) of the land snail Helix pomatia (L.). J Molluscan Stud 68:249–254

    Article  Google Scholar 

  • Hyun B, Choi K-H, Jang P-G, Jang M-C, Lee W-J, Moon C-H, Shin K (2014) Effects of increased CO2 and temperature on the growth of four diatom species (Chaetoceros debilis, Chaetocerosdidymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in laboratory experiments. J Environ Sci Int 23:1003–1012

    Article  Google Scholar 

  • Kaplan DL (1998) Molluscs shell structure: novel design strategies for synthetic materials. Curr Opin Solid State Mater Sci 3:232–236

    Article  Google Scholar 

  • Knoll AH (2003) Biomineralization and evolutionary history. In: Dove PM, De Yoro JJ, Weiner S (eds) Biomineralization: reviews in mineralogy and geochemistry, vol 54. Mineralogical Society of America, Chantilly, pp 329–356

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso J-P (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896

    Article  Google Scholar 

  • Liao H, Mutvei H, Sjöström M, Hammarström L, Li J (2000) Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials 21:457–468

    Article  Google Scholar 

  • Lipps J (1992) Proterozoic and Cambrian skeletonized protists. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, UK, pp 237–240

    Google Scholar 

  • Lowenstam HA (1954) Factors affecting the aragonite: calcite ratios in carbonate-secreting marine organisms. J Geol 62:284–322

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Mackenzie FT, Bischoff WD, Bishop FC, Loijens M, Schoonmaker J, Wollast R (1983) Mg-calcites: low temperature occurrence, solubility and solid-solution behavior. In: Reeder RJ (ed) Reviews in mineralogy, carbonates: mineralogy and chemistry. Mineralogical Society of America, Washington, DC, pp 97–143

    Google Scholar 

  • McIlroy D, Green OR, Brasier MD (2001) Palaeobiology and evolution of the earliest agglutinated foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia 34:13–29

    Article  Google Scholar 

  • Nicol D (1966) Cope’s rule and Precambrian and Cambrian invertebrates. J Palaeont 40:1397–1399

    Google Scholar 

  • Palmer AR (1983) Relative cost of producing skeletal organic matrix versus calcification: evidence from marine gastropods. Marine Biol 57:287–292

    Article  Google Scholar 

  • Palmer AR (1992) Calcification in marine molluscs: how costly is it? Proc Natl Acad Sci U S A 89:1379–1382

    Article  Google Scholar 

  • Peck LS (2008) Brachiopods and climate change. Earth Environ Sci Trans R Soc Edinb 98:451–456

    Google Scholar 

  • Peck LS, Brockington S, Brey T (1997) Growth and metabolism in the Antarctic brachiopod Liothyrella uva. Philos Trans R Soc 352:851–858

    Article  Google Scholar 

  • Porter SM (2007) Seawater chemistry and early carbonate biomineralization. Science 316(5829):1301–1302

    Article  Google Scholar 

  • Porter S (2011) The rise of predators. Geology 39:607–608

    Article  Google Scholar 

  • Privat KL, O’Connell TC, Richards MP (2002) Stable isotope analysis of human and faunal remains from the Anglo-Saxon cemetery at Berinsfield, Oxfordshire: dietary and social implications. J Archaeol Sci 29:779–790

    Article  Google Scholar 

  • Richards MP, Hedges REM (1999) Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. J Archaeol Sci 26:717–722

    Article  Google Scholar 

  • Riding R (1982) Cyanophyte calcification and changes in ocean chemistry. Nature 299:814–815

    Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  Google Scholar 

  • Rotjan RD, Lewis SM (2009) Predators selectively graze reproductive structures in a clonal marine organism. Marine Biol 156:569–577

    Article  Google Scholar 

  • Runnegar B (1985) Shell microstructures of Cambrian molluscs replicated by phosphate. Alcheringa 9:245–257

    Article  Google Scholar 

  • Sartori AF, Harper EM (2009) Sticky bivalves from the Mesozoic: clues to the origin of the anomalodesmatan arenophilic system. Lethaia 42:486–494

    Article  Google Scholar 

  • Shen C, Pratt BR, Zhang X (2014) Phosphatised coprolites from the middle Cambrian (Stage 5) Duyun fauna of China. Palaeogeogr Palaeoclimatol, Paleoecol 410:104–112

    Article  Google Scholar 

  • Siesser W (1993) Calcareous nannoplankton. In: Lipps J (ed) Fossil prokaryotes and protists. Blackwell Scientific, Oxford, pp 169–201

    Google Scholar 

  • Simkiss K (1977) Biomineralization and detoxification. Calc Tissue Res 24:199–200

    Article  Google Scholar 

  • Sleight VA, Thorne MA, Peck LS, Clark MS (2015) Transcriptomic response to shell damage in the Antarctic clam, Laternula elliptica: time scales and spatial localization. Marine Genomics 20:45–55. doi:10.1016/j.margen.2015.01.009, Epub 2015 Feb 9

    Article  Google Scholar 

  • Spann N, Harper EM, Aldridge DC (2010) The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften 97:743–751

    Article  Google Scholar 

  • Stanley GD, Fautin DG (2001) The origins of modern corals. Science 291:1913–1914

    Article  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reefbuilding and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr, Palaeoclimatol, Paleoecol 144:3–19

    Article  Google Scholar 

  • Stolarski J, Meibom A, PrzeniosÅ‚o M, Mazur M (2007) A Cretaceous scleractinian coral with a calcitic skeleton. Science 318:92–94

    Article  Google Scholar 

  • Taylor JD (1973) The structural evolution of the bivalve shell. Palaeontology 16:519–534

    Google Scholar 

  • Taylor JD, Kennedy WJ (1969) The influence of the periostracum on the shell structure of bivalve molluscs. Calcif Tissue Res 3:274–283

    Article  Google Scholar 

  • Taylor JD, Reid DG (1990) Shell microstructure and mineralogy of the Littorinidae; ecological and evolutionary significance. Hydrobiologia 193:199–215

    Article  Google Scholar 

  • Taylor JD, Kennedy WJ, Hall A (1969) The shell structure and mineralogy of the Bivalvia. Introduction, Nuculacea–Trigonacea. Bull Brit Mus (Nat Hist) Zool 3:1–125

    Google Scholar 

  • Taylor JD, Kennedy WJ, Hall A (1973) The shell structure and mineralogy of the Bivalvia. II. Lucinacea–Clavagellacea, conclusions. Bull Brit Mus (Nat Hist) Zool 22:253–284

    Google Scholar 

  • Taylor JD, Glover EA, Braithwaite CJR (1999) Bivalves with ‘concrete overcoats’: Granicorium and Samarangia. Acta Zool 80:285–300

    Article  Google Scholar 

  • Taylor PD, Lombardi C, Concito S (2014) Biomineralization in bryozoans: past, present and future. Biol Rev – Online early

    Google Scholar 

  • Thomas RDK, Reif WE (1993) The skeleton space: a finite set of organic designs. Evolution 47:341–360

    Article  Google Scholar 

  • Thomas RDK, Shearman RM, Stewart GW (2000) Evolutionary exploitation of design options by the first animals with hard skeletons. Science 288:1239–1242

    Article  Google Scholar 

  • Vendrasco MJ, Checa AG, Kouchinsky AV (2011) Shell microstructure of the early bivalve Pojetaia and the independent origin of nacre within the Mollusca. Palaeontology 54:825–850

    Article  Google Scholar 

  • Vermeij GJ (1983) Traces and trends in predation, with special reference to bivalved animals. Palaeontology 26:455–465

    Google Scholar 

  • Vermeij GJ (1990) The origin of skeletons. Palaios 4:585–589

    Article  Google Scholar 

  • Warén A, Bengtson S, Goffredi SK, Van Dover CL (2003) A hot-vent gastropod with iron sulfide dermal sclerites. Science 302:1007

    Article  Google Scholar 

  • Weiner S, Addadi L (2011) Crystallization pathways in biomineralization. Annu Rev Mater Res 41:21–40

    Google Scholar 

  • Wilkinson BH (1979) Biomineralization, palaeoceanography, and the evolution of calcareous marine organisms. Geology 7:524–527

    Article  Google Scholar 

  • Wood R (2011) Paleoecology of early skeletal metazoans: insights into biomineralization. Earth Sci Rev 106:184–190

    Article  Google Scholar 

  • Wood R, Zhuravlev AY (2012) Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons. Earth Sci Rev 115:249–261

    Article  Google Scholar 

  • Wood RA, Grotzinger JP, Dickson JAD (2002) Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296:2383–2386

    Article  Google Scholar 

  • Zhang Z-F, Li G-X, Holmer LE, Brock GA, Balthasar U, Skovsted CB, Fu D-J, Zhang X-L, Wang H-Z, Butler A, Zhang Z-L, Cao C-Q, Han J, Liu J-N, Shu D-G (2014) An early Cambrian agglutinated tubular lophophorate with brachiopod characters. Sci Rep 4:4682

    Google Scholar 

  • Zhuravlev AY, Wood RA (2008) Eve of biomineralization: controls on skeletal mineralogy. Geology 36:923–926

    Article  Google Scholar 

Download references

Acknowledgements

I was very grateful to be invited to take part in the Round Table discussion.

‘Biomineralization —Lessons from the past and for the future’ which proved a stimulating and thought-provoking session, really showing us how much more there is to learn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harper, E.M. (2016). Unanswered Questions in the Evolution of Biomineralisation. In: Grupe, G., McGlynn, G. (eds) Isotopic Landscapes in Bioarchaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48339-8_1

Download citation

Publish with us

Policies and ethics