Skip to main content

Nonnegative Matrix Factorizations for Intelligent Data Analysis

  • Chapter
  • First Online:
Non-negative Matrix Factorization Techniques

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

We discuss nonnegative matrix factorization (NMF) techniques from the point of view of intelligent data analysis (IDA), i.e., the intelligent application of human expertize and computational models for advanced data analysis. As IDA requires human involvement in the analysis process, the understandability of the results coming from computational models has a prominent importance. We therefore review the latest developments of NMF that try to fulfill the understandability requirement in several ways. We also describe a novel method to decompose data into user-defined—hence understandable—parts by means of a mask on the feature matrix, and show the method’s effectiveness through some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source: Cisco® Visual Networking Index (VNI) Forecast (2010–2015).

  2. 2.

    Since the values of the variance of data depends on the scale of the variables, usually the original data contained in X are subject to a standardization process so that each variable has mean zero and standard deviation one.

  3. 3.

    Henceforth a matrix is denoted with an uppercase letter, e.g., X, its elements with the corresponding lowercase letter, e.g., \(x_{\textit{ij}}\), a column vector in lowercase boldface, e.g., \(\mathbf {x}_i\).

  4. 4.

    The use of NMF in clustering applications will be detailed in Sect. 2.4.2.

  5. 5.

    In this chapter, we mainly consider NMF based on the error function described in (2.8), but other divergence measures could be used (e.g., generalized Kullback–Leibler divergence, \(\alpha \)-divergence). Anyway, technical details apart, the general ideas described in the section still hold.

  6. 6.

    The function in (2.10) yields values in the interval [0,1], where 0 indicates the minimum degree of sparseness obtained when all the elements \(x_i\) have the same absolute value, while 1 indicates the maximum degree of sparseness, which is reached when only one component of the vector x is different from zero.

  7. 7.

    The symbol \(W_{:i}\) denotes the ith column of W. The same applies for H.

  8. 8.

    The dataset is available at http://alumni.cs.ucr.edu/~titus/ (accessed: March 25th 2015).

  9. 9.

    http://sat.collegeboard.org.

References

  1. R.E. Bellman, Adaptive Control Processes—A Guided Tour (Princeton University Press, Princeton, 1961)

    MATH  Google Scholar 

  2. E. Benetos, M. Kotti, C. Kotropoulos, Applying supervised classifiers based on non-negative matrix factorization to musical instrument classification, in ICME (IEEE, 2006), pp. 2105–2108

    Google Scholar 

  3. E. Benetos, M. Kotti, C. Kotropoulos, Musical instrument classification using non-negative matrix factorization algorithms and subset feature selection, in Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP’06), vol. V (2006), pp. 221–224

    Google Scholar 

  4. E. Benetos et al., Comparison of subspace analysis-based and statistical model-based algorithms for musical instrument classification, in 2nd Workshop on Immersive Communication and Broadcast Systems (ICOB’05), (Berlin, Germany, 2005)

    Google Scholar 

  5. M. Berry et al., Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)

    Article  MATH  Google Scholar 

  6. M. Berthold, D.J. Hand (eds.), Intelligent Data Analysis: An Introduction, 1st edn. (Springer, New York, 1999)

    MATH  Google Scholar 

  7. M.R. Berthold et al., Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data, 1st edn. (Springer, Incorporated, London, 2010)

    Book  Google Scholar 

  8. R. Bierig et al., Conquering data: the state of play in intelligent data analytics (2015)

    Google Scholar 

  9. J.P. Brunet et al., Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. 101(12), 4164–4169 (2004). doi:10.1073/pnas.0308531101. ISSN: 1091-6490

    Google Scholar 

  10. J.E. Burger, P.L.M. Geladi, Hyperspectral image data conditioning and regression analysis, Techniques and Applications of Hyperspectral Image Analysis (Wiley, Chichester, 2007)

    Google Scholar 

  11. D. Cai et al., Locality preserving nonnegative matrix factorization, in Proceedings of 2009 International Joint Conference on Artificial Intelligence (IJCAI’09) (2009)

    Google Scholar 

  12. P. Carmona-Saez et al., Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinform. 7, 78 (2006)

    Article  Google Scholar 

  13. G. Casalino, Non-negative factorization methods for extracting semantically relevant features in Intelligent Data Analysis. Ph.D. thesis, Dipartimento di Informatica, Università degli Studi di Bari (2015)

    Google Scholar 

  14. G. Casalino, N. Del Buono, C. Mencar, Subtractive clustering for seeding non-negative matrix factorizations. Inf. Sci. 257, 369–387 (2014). doi:10.1016/j.ins.2013.05.038. ISSN: 0020-0255

    Article  Google Scholar 

  15. G. Casalino, N. Del Buono, M. Minervini, Nonnegative matrix factorizations performing object detection and localization. Appl. Comput. Intell. Soft Comput. 2012, 15:15–15:15 (2012). doi:10.1155/2012/781987. ISSN: 1687-9724

    Google Scholar 

  16. G. Casalino, N. Del Buono, C. Mencar, Part-based data analysis with masked non-negative matrix factorization, in Computational Science and Its Applications–ICCSA 2014–14th International Conference, Guimarães, Portugal, 30 June-3 July 2014, Proceedings, Part VI, ed. by B. Murgante, S. Misra, A. Maria, A.C. Rocha, C. Maria Torre, J. Gustavo Rocha, M. Irene Falcão, D. Taniar, B.O. Apduhan, O. Gervasi. Lecture Notes in Computer Science, vol. 8584 (Springer, 2014), pp. 440–454. doi:10.1007/978-3-319-09153-2_33

    Google Scholar 

  17. G. Casalino et al., Fattorizzazioni matriciali non negative per l’analisi dei dati nell’educational data mining, in DIDAMATICA2012 (2012)

    Google Scholar 

  18. J. Chen, S. Feng, J. Liu, Topic sense induction from social tags based on non-negative matrix factorization. Inf. Sci. 280, 16–25 (2014). doi:10.1016/j.ins.2014.04.048. ISSN: 0020-0255

    Article  MathSciNet  Google Scholar 

  19. Y. Chen et al., Non-negative matrix factorization for semi-supervised data clustering. Knowl. Inf. Syst. 17(3), 355–379 (2008). doi:10.1007/s10115-008-0134-6. ISSN: 0219-1377

    Article  Google Scholar 

  20. Y. Chen et al., Non-negative matrix factorization for semisupervised heterogeneous data coclustering. IEEE Trans. Knowl. Data Eng. 22(10), 1459–1474 (2010). doi:10.1109/TKDE.2009.169. ISSN: 1041-4347

    Google Scholar 

  21. Y. Chen et al., Incorporating user provided constraints into document clustering, in Seventh IEEE International Conference on Data Mining, ICDM 2007 (2007), pp. 103–112. doi:10.1109/ICDM.2007.67

  22. Y. Cho, L.K. Saul, Nonnegative matrix factorization for semi-supervised dimensionality reduction, in CoRR (2011). abs/1112.3714

  23. S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in IEEE International Joint Conference on Neural Networks, 2008. IJCNN. IEEE World Congress on Computational Intelligence (IEEE, 2008), pp. 1828–1832

    Google Scholar 

  24. M. Chu et al., Optimality, computation, and interpretation of nonnegative matrix factorizations. SIAM J. Matrix Anal. 4–8030 (2004)

    Google Scholar 

  25. A. Cichocki et al., Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, Chichester, 2009). ISBN 0470746661, 9780470746660

    Book  Google Scholar 

  26. N. Del Buono, A penalty function for computing orthogonal non-negative matrix factorizations, in ISDA (IEEE Computer Society, 2009), pp. 1001–1005. ISBN: 978-0-7695-3872-3

    Google Scholar 

  27. M. Desmarais, Conditions for effectively deriving a q-matrix from data with non-negative matrix factorization. best paper award, in EDM, ed. by M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero, J.C. Stamper (2011), pp. 41–50. ISBN: 978-90-386-2537-9

    Google Scholar 

  28. M.C. Desmarais, B. Beheshti, R. Naceur, Item to skills mapping: deriving a conjunctive Q-matrix from data, in Intelligent Tutoring Systems (2012), pp. 454–463

    Google Scholar 

  29. K. Devarajan, Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput. Biol. 4(7), e1000029 (2008)

    Article  Google Scholar 

  30. I.S. Dhillon, S. Sra, Generalized nonnegative matrix approximations with Bregman divergences, in Proceeding of Neural Information Processing Systems (Curran Associates Inc., 2005), pp. 283–290

    Google Scholar 

  31. C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and k-means–spectral clustering, in Proceedings of the SIAM Data Mining Conference (SIAM, 2005), pp. 606–610

    Google Scholar 

  32. C. Ding et al., Orthogonal nonnegative matrix tri-factorizations for clustering, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2006), pp. 126–135

    Google Scholar 

  33. D. Donoho, V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts? in Advances in Neural Information Processing Systems, vol. 16, ed. by S. Thrun, L. Saul, B. Schölkopf (MIT Press, Cambridge, 2004)

    Google Scholar 

  34. K. Drakakis et al., Analysis of financial data using non-negative matrix factorization. Int. Math. Forum 3(38), 1853–1870 (2008)

    MATH  MathSciNet  Google Scholar 

  35. S. Essid, C. Févotte, Smooth nonnegative matrix factorization for unsupervised audiovisual document structuring. IEEE Trans. Multimed. 15(2), 415–425 (2013). doi:10.1109/TMM.2012.2228474

    Article  Google Scholar 

  36. U.M. Fayyad et al. (eds.), Advances in Knowledge Discovery and Data Mining (American Association for Artificial Intelligence, 1996). Chap. From data mining to knowledge discovery: an overview, pp. 1–34. ISBN: 0-262-56097-6

    Google Scholar 

  37. T. Feng et al., Local non-negative matrix factorization as a visual representation, in Proceedings of the 2nd International Conference on Development and Learning, ICDL’02 (IEEE Computer Society, 2002), p. 178

    Google Scholar 

  38. R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(7), 179–188 (1936)

    Article  Google Scholar 

  39. Y. Gao, G. Church, Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 21(21), 3970–3975 (2005)

    Article  Google Scholar 

  40. N. Gillis, The why and how of nonnegative matrix factorization, in Regularization, Optimization, Kernels, and Support Vector Machines, ed. by M. Signoretto, J.A.K. Suykens, A. Argyriou. Machine Learning and Pattern Recognition Series (Chapman and Hall/CRC, Boca Raton, 2014)

    Google Scholar 

  41. N. Gillis, F. Glineur, Using underapproximations for sparse nonnegative matrix factorization. Pattern Recognit 43(4), 1676–1687 (2010). doi:10.1016/j.patcog.2009.11.013. ISSN: 0031-3203

    Article  MATH  Google Scholar 

  42. N. Gillis, D. Kuang, H. Park, Hierarchical clustering of hyperspectral images using rank-two nonnegative matrix factorization, in CoRR (2013). abs/1310.7441

  43. N. Gillis, R.J. Plemmons, Dimensionality reduction, classification, and spectral mixture analysis using non-negative underapproximation. Opt. Eng. 50(2), 027001 (2011). doi:10.1117/1.3533025

    Article  Google Scholar 

  44. N. Gillis, R.J. Plemmons, Sparse nonnegative matrix underapproximation and its application to hyperspectral image analysis. Linear Algebra Appl. 438(10), 3991–4007 (2013). doi:10.1016/j.laa.2012.04.033. ISSN: 0024-3795

    Article  MATH  MathSciNet  Google Scholar 

  45. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University Press, Baltimore, 2001)

    Google Scholar 

  46. G.H. Golub, A. Hoffman, G.W. Stewart, A generalization of the Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra Appl. 88——89(0), 317–327 (1987). doi:10.1016/0024-3795(87)90114-5. ISSN: 0024-3795

    Article  MathSciNet  Google Scholar 

  47. Q. Gu, J. Zhou, C.H.Q. Ding, Collaborative filtering: weighted nonnegative matrix factorization incorporating user and item graphs, in SDM (SIAM, 2010), pp. 199–210

    Google Scholar 

  48. D. Guillamet, J. Vitriá, Evaluation of distance metrics for recognition based on non-negative matrix factorization. Pattern Recognit. Lett. 24(9–10), 1599–1605 (2003). doi:10.1016/S0167-8655(02)00399-9. ISSN: 0167-8655

    Article  MATH  Google Scholar 

  49. D. Guillamet, J. Vitriá, Non-negative matrix factorization for face recognition, in CCIA’02: Proceedings of the 5th Catalonian Conference on AI (Springer, New York, 2002), pp. 336–344

    Google Scholar 

  50. D.J. Hand, Intelligent data analysis: issues and opportunities, in IDA, ed. by X. Liu, P.R. Cohen, M.R. Berthold. Lecture Notes in Computer Science, vol. 1280 (Springer, New York, 1997), pp. 1–14

    Google Scholar 

  51. Y. He, H. Lu, S. Xie, Semi-supervised non-negative matrix factorization for image clustering with graph Laplacian. Multimed. Tools Appl. 72(2), 1441–1463 (2014). doi:10.1007/s11042-013-1465-1. ISSN: 1380-7501

    Article  Google Scholar 

  52. Y. He et al., Non-negative matrix factorization with pairwise constraints and graph Laplacian. Neural Process. Lett. pp. 1–19 (2014). doi:10.1007/s11063-014-9350-0. ISSN: 1370-4621

    Google Scholar 

  53. M. Heiler, C. Schnörr, Learning sparse representations by non-negative matrix factorization and sequential cone programming. J. Mach. Learn. Res. 7, 1385–1407 (2006). ISSN: 1532- 4435

    MATH  MathSciNet  Google Scholar 

  54. J.H. Holmes, N. Peek, Intelligent data analysis in biomedicine. J. Biomed. Inform. 40(6), 605–608 (2007)

    Article  Google Scholar 

  55. P.K. Hopke, Receptor Modeling in Environmental Chemistry (Wiley, New York, 1985)

    Google Scholar 

  56. H. Hotelling, Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)

    Article  Google Scholar 

  57. P.O. Hoyer, Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004). ISSN: 1532-4435

    MATH  MathSciNet  Google Scholar 

  58. P.O. Hoyer, Non-negative sparse coding, in Neural Networks for Signal processing XII (Proceedings of IEEE Workshop on Neural Networks for Signal Processing) (2002), pp. 557–565

    Google Scholar 

  59. K. Huang, N.D. Sidiropoulos, A. Swami, Non-negative matrix factorization revisited: uniqueness and algorithm for symmetric decomposition. IEEE Trans. Signal Process. (TSP) 62(1), 211–224 (2014)

    Article  MathSciNet  Google Scholar 

  60. A. Hyvärinen, Survey on Independent component analysis. Neural Comput. Surv. 2, 94–128 (1999)

    Google Scholar 

  61. J. Yoo, S. Choi, Orthogonal nonnegative matrix tri-factorization for co-clustering: multiplicative updates on Stiefel manifolds. Inf. Process. Manag. 46, 559–570 (2010)

    Article  Google Scholar 

  62. J.E. Jackson, A User’s Guide to Principal Components. Wiley Series in Probability and Statistics (Wiley-Interscience, Hoboken, 2003). ISBN: 0471471348

    Google Scholar 

  63. S. Jia, Y. Qian. A complexity constrained nonnegative matrix factorization for hyperspectral unmixing, in ICA, ed. by M.E. Davies et al. Lecture Notes in Computer Science, vol. 4666 (Springer, New York, 2007), pp. 268–276. ISBN: 978-3-540-74493-1

    Google Scholar 

  64. L. Jing et al., Semi-supervised clustering via constrained symmetric non-negative matrix factorization, in Brain Informatics, ed. by F. Zanzotto, et al. Lecture Notes in Computer Science, vol. 7670 (Springer, Berlin, 2012), pp. 309–319. ISBN: 978-3-642-35138-9. doi:10.1007/978-3-642-35139-6_29

    Google Scholar 

  65. I.T. Jolliffe, Principal Component Analysis (Springer, New York, 1986)

    Book  Google Scholar 

  66. E. Kim, P.K. Hopke, E.S. Edgerton, Source identification of Atlanta aerosol by positive matrix facorization. J. Air Waste Manag. Assoc. 733–739 (2003)

    Google Scholar 

  67. H. Kim, H. Park, Sparse Non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12), 1495–1502 (2007). doi:10.1093/bioinformatics/btm134. ISSN: 1367-4803

    Article  Google Scholar 

  68. C. Lazar, A. Doncescu, Non negative matrix factorization clustering capabilities; application on multivariate image segmentation, in CISIS, ed. by L. Barolli, F. Xhafa, H.-H. Hsu (IEEE Computer Society, 2010), pp. 924–929. ISBN: 978-0-7695- 3575-3

    Google Scholar 

  69. D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems, vol. 13, ed. by T.K. Leen, T.G. Dietterich, V. Tresp (MIT Press, Cambridge, 2001), pp. 556–562

    Google Scholar 

  70. D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999). doi:10.1038/44565. ISSN: 0028-0836

    Article  Google Scholar 

  71. H. Lee, J. Yoo, S. Choi, Semi-supervised nonnegative matrix factorization. IEEE Signal Process. Lett. 17(1), 4–7 (2010). doi:10.1109/LSP.2009.2027163. ISSN: 1070-9908

    Article  Google Scholar 

  72. S.Z. Li et al., Learning spatially localized, parts-based representation. Comput. Vis. Pattern Recognit. 1, 207–212 (2001). doi:10.1109/CVPR.2001.990477

    Google Scholar 

  73. T. Li, C. Ding, The relationships among various nonnegative matrix factorization methods for clustering, in Proceedings of the Sixth International Conference on Data Mining, ICDM’06 (IEEE Computer Society, Washington, 2006), pp. 362–371. ISBN: 0-7695-2701-9

    Google Scholar 

  74. T. Li, C.H.Q. Ding, Nonnegative matrix factorizations for clustering: a survey, Data Clustering: Algorithms and Applications (CRC Press, Boca Raton, 2013)

    Google Scholar 

  75. Z. Lihong, G. Zhuang, X. Xu, Facial expression recognition based on PCA and NMF, in 7th World Congress on Intelligent Control and Automation, WCICA 2008 (2008), pp. 6826–6829. doi:10.1109/WCICA.2008.4593968

  76. H. Liu, H. Motoda, Computational Methods of Feature Selection. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. (Chapman & Hall/CRC, Boca Raton, 2007). ISBN: 1584888784

    Google Scholar 

  77. H. Liu, Z. Wu, Non-negative matrix factorization with constraints, in AAAI, ed. by M. Fox, D. Poole (AAAI Press, 2010)

    Google Scholar 

  78. H. Liu et al., Constrained nonnegative matrix factorization for image representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1299–1311 (2012)

    Article  Google Scholar 

  79. P. Liu et al., The application of principal component analysis and nonnegative matrix factorization to analyze time-resolved optical waveguide absorption spectroscopy data. Anal. Methods 5(17), 4454–4459 (2013)

    Article  Google Scholar 

  80. W. Liu, N. Zheng, Non-negative matrix factorization based methods for object recognition. Pattern Recognit. Lett. 25(8), 893–897 (2004). doi:10.1016/j.patrec.2004.02.002. ISSN: 0167-8655

    Article  Google Scholar 

  81. W. Liu, N. Zheng, X. Lu, Non-negative matrix factorization for visual coding, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), vol. 3 (2003), pp. 293–296

    Google Scholar 

  82. F.M. Lord, A Theory of Test Scores (1952)

    Google Scholar 

  83. N. Lyubimov, M. Kotov, Non-negative matrix factorization with linear constraints for single-channel speech enhancement, in INTERSPEECH, ed. by F. Bimbot et al. (ISCA, 2013), pp. 446–450

    Google Scholar 

  84. W.K. Ma et al., A signal processing perspective on hyperspectral unmixing: insights from remote sensing. IEEE Signal Process. Mag. 31(1), 67–81 (2014). doi:10.1109/MSP.2013.2279731

    Article  Google Scholar 

  85. M.W. Mahoney, P. Drineas, CUR matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. 106(3), 697–702 (2009). doi:10.1073/pnas.0803205106

    Article  MATH  MathSciNet  Google Scholar 

  86. E. Mejía-Roa et al., BioNMF: a web-based tool for nonnegative matrix factorization in biology. Nucleic Acids Res. 36, 523–528 (2008)

    Article  Google Scholar 

  87. A. Mirzal, Clustering and latent semantic indexing aspects of the nonnegative matrix factorization, arXiv preprint arXiv:1112.4020 (2011), pp. 1–28

  88. A. Montanari, E. Richard. Non-negative principal component analysis: message passing algorithms and sharp asymptotics, in CoRR (2014). abs/1406.4775

  89. B. Ng, R. Abugharbieh, M.J. McKeown, Functional segmentation of fMRI data using adaptive non-negative sparse PCA (ANSPCA), in Medical Image Computing and Computer-Assisted Intervention (MICCAI) (Springer, London, 2009), pp. 490–497

    Google Scholar 

  90. E. Oja, M. Plumbley, Blind separation of positive sources using non-negative PCA, in Proceedings of 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003) (2003), pp. 11–16

    Google Scholar 

  91. A. Pascual-Montano et al., Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 403–415 (2006). doi:10.1109/TPAMI.2006.60. ISSN: 0162-8828

    Article  Google Scholar 

  92. V.P. Pauca, J. Piper, R.J. Plemmons, Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl. 416(1), 29–47 (2006). doi:10.1016/j.laa.2005.06.025. ISSN: 0024-3795

    Article  MATH  MathSciNet  Google Scholar 

  93. K. Pearson, On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)

    Article  Google Scholar 

  94. N.N. Pise, P. Kulkarni, A survey of semi-supervised learning methods, in Computational Intelligence and Security (IEEE Computer Society, 2008), pp. 30–34. ISBN: 978-0-7695-3508-1

    Google Scholar 

  95. M. Plumbley, Algorithms for non-negative independent component analysis. IEEE Trans. Neural Netw. 14(3), 534–543 (2003)

    Article  Google Scholar 

  96. M. Plumbley, Conditions for non-negative independent component analysis. IEEE Signal Process. Lett. 9(6), 177–180 (2002)

    Article  Google Scholar 

  97. M.D. Plumbley, E. Oja, A nonnegative PCA algorithm for independent component analysis. IEEE Trans. Neural Netw. 15(1), 66–76 (2004)

    Article  Google Scholar 

  98. F. Pompili et al., Two algorithms for orthogonal nonnegative matrix factorization with application to clustering, in CoRR (2012). abs/1201.0901

  99. B. Ribeiro et al., Extracting discriminative features using nonnegative matrix factorization in financial distress data, in ICANNGA, ed. by M. Kolehmainen, P.J. Toivanen, B. Beliczynski. Lecture Notes in Computer Science, vol. 5495 (Springer, New York, 2009), pp. 537–547. ISBN: 978-3-642-04920-0

    Google Scholar 

  100. C. Romero, S. Ventura, Educational data mining: a review of the state of the art. Trans. Syst. Man Cybern. Part C 40(6), 601–618 (2010). ISSN: 1094-6977

    Article  Google Scholar 

  101. F. Shahnaz et al., Document clustering using nonnegative matrix factorization. Inf. Process. Manag. 42(2), 373–386 (2006). doi:10.1016/j.ipm.2004.11.005. ISSN: 0306-4573

    Article  MATH  Google Scholar 

  102. C. Spearman, General intelligence, objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904)

    Article  Google Scholar 

  103. X. Sun, Q. Zhang, Z. Wang, Face recognition based on NMF and SVM. Electron. Commer. Secur. Int. Symp. 1, 616–619 (2009). doi:10.1109/ISECS.2009.98

    Google Scholar 

  104. R. Tandon, S. Sra, Sparse nonnegative matrix approximation: new formulations and algorithms. Technical report, MPI Technical report (2010)

    Google Scholar 

  105. K.K. Tatsuoka, Rule space: an approach for dealing with misconceptions based on item response theory. J. Educ. Meas. (1983)

    Google Scholar 

  106. Theory of Mental Tests. Wiley Publications in Psychology (Wiley, New York, 1950)

    Google Scholar 

  107. M. Turk, A. Pentland, Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991). doi:10.1162/jocn.1991.3.1.71. ISSN: 0898-929X

    Article  Google Scholar 

  108. L.J.P. Van der Maaten, E.O. Postma, H.J. van den Herik, Dimensionality reduction: a comparative review (2008)

    Google Scholar 

  109. C. Wang et al., Non-negative semi-supervised learning, in AISTATS, JMLR Proceedings, vol. 5, ed. by D.A. Van Dyk, M. Welling, JMLR (2009), pp. 575–582

    Google Scholar 

  110. F. Wang et al., Community discovery using nonnegative matrix factorization. Data Min. Knowl. Discov. 22(3), 493–521 (2011). doi:10.1007/s10618-010-0181-y. ISSN: 1384-5810

    Article  MATH  MathSciNet  Google Scholar 

  111. Y. Wang et al, Fisher non-negative matrix factorization for learning local features, in Asian Conference on Computer Vision (2004)

    Google Scholar 

  112. W. Xu, X. Liu, Y. Gong, Document clustering based on nonnegative matrix factorization, in Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’03 (ACM, New York, 2003), pp. 267–273. ISBN: 1-58113-646-3

    Google Scholar 

  113. Y. Yang, B.-G. Hu, Pairwise constraints-guided non-negative matrix factorization for document clustering, in IEEE/WIC/ACM International Conference on Web Intelligence (2007), pp. 250–256. doi:10.1109/WI.2007.66

  114. R. Zass, A. Shashua, Nonnegative sparse PCA, in Neural Information Processing Systems (2007)

    Google Scholar 

  115. Z. Zhang, Nonnegative matrix factorization: models, algorithms and applications, in DATA MINING: Foundations and Intelligent Paradigms, vol. 2, ed. by D.E. Holmes, L.C. Jain (Springer, Berlin, 2011), pp. 99–134

    Google Scholar 

  116. A. Zinovyev et al. Blind source separation methods for deconvolution of complex signals in cancer biology, in CoRR (2013). abs/1301.2634

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Casalino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casalino, G., Del Buono, N., Mencar, C. (2016). Nonnegative Matrix Factorizations for Intelligent Data Analysis. In: Naik, G. (eds) Non-negative Matrix Factorization Techniques. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48331-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48331-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48330-5

  • Online ISBN: 978-3-662-48331-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics