Skip to main content

Normal Growth of the Spine and Thorax

  • Chapter
Book cover The Growing Spine

Abstract

The growing spine is the product of more than 130 physes or growth plates. Growth holds the basics; it is a ratio between remaining and elapsed growth, and any surgical strategy should be adjusted according to remaining growth. As the spinal deformity progresses, not only spinal growth is affected but also the size and shape of the thorax are modified. There is a normal interaction between the organic components of the spine, the thoracic cage, and the lungs. Both early-onset spinal deformities and an early spinal arthrodesis alter spinal growth and affect thorax development by changing its shape and reducing its normal mobility. As a “domino effect,” the distortion of the thorax will eventually interfere with lung development and cardiac function, leading those children to develop thoracic insufficiency syndrome and cor pulmonale, which can be lethal in the most severe cases.

The growing spine can be approached by diametric measurements; sitting height is the most reliable parameter to assess trunk growth.

In normal children, the longitudinal growth of the thoracic spine is about 1.3 cm/year between birth and 5 years, about 0.7 cm/year between the ages of 5 and 10 years, and 1.1 cm/year during puberty. T1–T12 is the posterior pillar of the thoracic cage, and it is a strategic segment. A nearly arthrodesis of this segment can have repercussions on thoracic growth and lungs development. The ideal surgical treatment of early-onset scoliosis has not yet been identified. Surgery must be minimally invasive. Due to repetitive surgical procedures, however, the surgeon inadvertently fuses almost the whole spine and forgets that it is necessary to spare levels as well as spinal motion. It is important to remember that between T1 and S1, there are only 18 vertebrae. The child with severe early-onset spinal deformities must not become a full-time patient or a juxtaposition of surgical procedures. The ultimate goal of treatment is to improve the natural history of the patient’s spinal deformity as well as the quality of life and to have these children become independent adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acheson RM (1957) The Oxford method of assessing skeletal maturity. Clin Orthop 10:19

    CAS  PubMed  Google Scholar 

  2. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson A, Asher MA (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine 30(17S):S46–S57

    Article  PubMed  Google Scholar 

  3. Bailey DK, Pinneau S (1952) Tables for predicting adult height from skeletal age. J Pediatr 40:421

    Google Scholar 

  4. Biondi J, Weiner DS, Bethem D et al (1985) Correlation of Risser’s sign and bone age determination in adolescent idiopathic scoliosis. J Pediatr Orthop 5:697

    Article  CAS  PubMed  Google Scholar 

  5. Bowen R, Scaduto A, Banuelos S (2008) Does early thoracic fusion exacerbate preexisting restrictive lung disease in congenital scoliosis patients? J Pediatr Orthop 28:506–511

    Article  PubMed  Google Scholar 

  6. Buckwalter JA, Ehrlich MG, Sandell LI et al (eds) (1997) Skeletal growth and development: clinical issues and basic science advances, vol 3. American Academy of Orthopaedic Surgeons, Rosemont, p 577

    Google Scholar 

  7. Bunch W, Dvonch V (1983) Pitfalls in the assessment of skeletal immaturity: an anthropologic case study. J Pediatr Orthop 3:220

    Article  CAS  PubMed  Google Scholar 

  8. Campbell RM, Smith MD, Mayes TC et al (2003) The characteristic of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am 85:399–408

    Article  PubMed  Google Scholar 

  9. Campbell RM, Hell-Voecke AK (2003) Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. J Bone Joint Surg Am 85:409–420

    PubMed  Google Scholar 

  10. Campbell RM, Smith MD, Hell-Voecke AK (2004) Expansion thoracoplasty: the surgical technique of opening-wedge thoracostomy. J Bone Joint Surg Am 86(Suppl I):51–64

    PubMed  Google Scholar 

  11. Campbell RM Jr, Smith MD, Mayes TC et al (2004) The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am 86A(8):1659–1674

    Google Scholar 

  12. Canavese F, Dimeglio A, Volpatti D, Stebel M (2007) Dorsal arthrodesis of thoracic spine and effects on thorax growth in prepubertal New Zealand white rabbits. Spine 32(16):E443–E450

    Article  PubMed  Google Scholar 

  13. Canavese F, Dimeglio A, Cavalli F (2007) Arthrodesis of the first six dorsal vertebrae in prepubertal New Zealand white rabbits and thoracic growth to skeletal maturity: the role of the rib-vertebral-sternal complex. Minerva Orthop Traumatol 58:369–377

    Google Scholar 

  14. Carpenter CT, Lester EL (1993) Skeletal age determination in young children: analysis of three regions of the hand/wrist film. J Pediatr Orthop 13:76

    Article  CAS  PubMed  Google Scholar 

  15. Charles YP, Dimeglio A (2006) Progression risk of idiopathic juvenile scoliosis during pubertal growth. Spine 31:7

    Article  Google Scholar 

  16. Charles YP, Dimeglio A, Canavese F et al (2007) Skeletal age assessment from the olecranon for idiopathic scoliosis at Risser grade 0. J Bone Joint Surg Am 89(12):2737–2744

    Article  PubMed  Google Scholar 

  17. Charles YP, Dimeglio A, Marcoul M, Bourgin JF, Marcoul A, Bozonnat MC (2008) Influence of idiopathic scoliosis on three-dimensional thoracic growth. Spine 33(11):1209–1218

    Article  PubMed  Google Scholar 

  18. Cheng JCY, Leung SSF, Chin BSK et al (1998) Can we predict body height from segmental bone length measurements? A study of 3,647 children. J Pediatr Orthop 18:387

    CAS  PubMed  Google Scholar 

  19. Cundy P, Paterson D, Morris L et al (1988) Skeletal age estimation in leg length discrepancy. J Pediatr Orthop 8:513

    Article  CAS  PubMed  Google Scholar 

  20. Diméglio A (1987) La croissance en orthopedie. Sauramps Medical, Montpellier

    Google Scholar 

  21. Dimeglio A, Bonnel F (1990) Growth of the spine. In: Raimondi AJ, Choux M, Di Rocco C (eds) Principales of pediatric neuro-surgery: the pediatric spine, development and the dysraphic stage, vol 9. Springer, New York, p 39

    Google Scholar 

  22. Dimeglio A, Bonnel F (1990) Le rachis en croissance. Springer, Paris

    Google Scholar 

  23. Dimeglio A (1993) Growth of the spine before age 5 years. J Pediatr Orthop B 1:102

    Article  Google Scholar 

  24. Dimeglio A (2001) Growth in pediatric orthopaedics. J Pediatr Orthop 21:549–555

    CAS  PubMed  Google Scholar 

  25. Dimeglio A, Charles YP, Daures JP (2005) Accuracy of the Sauvegrain method in determining skeletal age during puberty. J Bone Joint Surg Am 87(8):1689–1696

    Article  PubMed  Google Scholar 

  26. Dimeglio A (2005) Growth in pediatric orthopedics. In: Morrissy T, Weinstein SL (eds) Lovell and Winter’s pediatric orthopedics, 6th edn. Lippincott William & Wilkins, Philadelphia, pp 35–65

    Google Scholar 

  27. Dubousset J, Herring JA, Shufflebarger HL (1989) The crankshaft phenomenon. J Pediatr Orthop 9:541

    Article  CAS  PubMed  Google Scholar 

  28. Dubousset J, Wicart P, Pomero V (2002) Scolioses thoraciques: les gibbosités exo et endo-thoraciques et l’index de pénétration rachidienne. Rev Chir Orthop 88:9–18

    CAS  PubMed  Google Scholar 

  29. Duval-Beaupère G (1970) Les repères de maturation dans la surveillance des scolioses. Rev Chir Orthop 56:59

    PubMed  Google Scholar 

  30. Duval-Beaupère G (1976) Croissance residuelle de la taille et des segments apres la premiere menstruation chez la fille. Rev Chir Orthop 62:501

    PubMed  Google Scholar 

  31. Emans JB, Caubet JF, Ordonez CL et al (2005) The treatment and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prothetic titanium rib: growth of thoracic spine and improvement of long volumes. Spine 30:558

    Article  Google Scholar 

  32. Gollogly S, Smith JT, White SK et al (2004) The volume of lung parenchyma as a function of age: a review of 1050 normal CT scans of the chest with three-dimensional volumetric reconstruction of the pulmonary system. Spine 29:2061–2067

    Article  PubMed  Google Scholar 

  33. Grassi V, Tantucci C (1993) Respiratory prognosis in chest wall diseases. Arch Chest Dis 48(2):183–187

    CAS  Google Scholar 

  34. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, Stanford, p 50

    Google Scholar 

  35. Hamill PVV, Drizd TA, Johnson CL et al (1979) National center for health statistics percentiles. Am J Clin Nutr 32:607

    CAS  PubMed  Google Scholar 

  36. Herring JA (ed) (2008) Scoliosis. In: Tachdjian’s pediatric orthopaedics, 4th edn, vol. 1. Saunders–Elsevier, Philadelphia, pp 358–376

    Google Scholar 

  37. Hensinger RN (1986) Standards in pediatric orthopaedic: charts, tables and graphs illustrating growth. Raven, New York

    Google Scholar 

  38. Hoppenfeld S, Lonner B, Murthy V et al (2003) The rib epiphysis and other growth centers as indicators of the end of spinal growth. Spine 29:47–50

    Article  Google Scholar 

  39. Jarzem PF, Gledwill RB (1993) Predicting height from arm measurement. J Pediat Orthop 13:761

    Google Scholar 

  40. Karol LA, Johnston CE, Browne RH et al (1993) Progression of the curve in boys who have idiopathic scoliosis. J Bone Joint Surg Am 75:1804

    CAS  PubMed  Google Scholar 

  41. Karol LA, Johnston CE, Mladenov K, Schochet P, Walters P (2008) Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J Bone Joint Surg Am 90:1272–1281

    Article  PubMed  Google Scholar 

  42. Lefort J (1981) Utilisation du coefficient de croissance résiduelle dans le calcul prévisionnel des inégalités de longueur des membres inférieurs. Rev Chir Pediatr Orthop 67:753

    CAS  Google Scholar 

  43. Little DG, Sussman MD (1994) The Risser sign: a critical analysis. J Pediatr Orthop 14:569

    Article  CAS  PubMed  Google Scholar 

  44. Little DG, Song KM, Katz D et al (2000) Relationship of peak height velocity to other maturity indicators in idiopathic scoliosis in girls. J Bone Joint Surg Am 82:685–693

    CAS  PubMed  Google Scholar 

  45. Lonstein JE, Carlson JM (1984) The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 66:1061–1071

    CAS  PubMed  Google Scholar 

  46. Lonstein JE (1995) Embryology and spine growth. In: Lonstein JL, Bradford DS, Winter RB et al (eds) Moes’ textbook of scoliosis and other spinal deformities, 3rd edn. WB Saunders, Philadelphia, p 23

    Google Scholar 

  47. Mehta HP, Snyder BD, Callender NN, Bellardine CL, Jackson AC (2006) The reciprocal relationship between thoracic and spinal deformity and its effect on pulmonary function in a rabbit model. A pilot study. Spine 31(23):2654–2664

    Article  PubMed  Google Scholar 

  48. Miller F, Koreska J (1992) Height measurement of patients with neuromuscular disease and contractures. Dev Med Child Neurol 35:55

    Google Scholar 

  49. Paley D, Bhave A, Herznberg JE et al (2000) Multiplier method for predicting limb-length discrepancy. J Bone Joint Surg Am 82:1432–1446

    PubMed  Google Scholar 

  50. Prader A, Lango RH, Molinari L et al (1989) Physical growth of Swiss children from birth to 20 years of age: first longitudinal study of growth and development. Helv Paediatr Acta 52(Suppl):1–25

    CAS  Google Scholar 

  51. Richards BS (1997) The effects of growth on the scoliotic spine following posterior spinal fusion. In: Buckwalter JA, Ehrlich MG, Sandell LJ et al (eds) Skeletal growth and development: clinical issues and basic science advances, vol 3. American Academy of Orthopaedic Surgeons, Rosemont, p 577

    Google Scholar 

  52. Risser J, Agostini S, Sampaio J et al (1973) The sitting-standing height ratio as a method of evaluating early spine fusion in the growing child. Clin Orthop 24:7

    CAS  Google Scholar 

  53. Roberto RF, Lonstein JE, Winter RB et al (1997) Curve progression in Risser stage 0 on patients after posterior spinal fusion for idiopathic scoliosis. J Pediatr Orthop 17:718

    CAS  PubMed  Google Scholar 

  54. Sanders JO, Khoury JG, Kishan S et al (2008) Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am 90:540–553

    Article  PubMed  Google Scholar 

  55. Sauvegrain J, Nahm H, Bronstein N (1962) Etude de la maturation osseuse du coude. Ann Radiol 5:542

    CAS  PubMed  Google Scholar 

  56. Sempé M, Pavia C (1979) Atlas de la maturation sequelettique. SIMEP, Paris

    Google Scholar 

  57. Tanner JM, Whitehouse RH, Takaishi M (1966) Standards from birth to maturity for height, weight height velocity and weight velocity. British children 1965, parts I and II. Arch Dis Child 41:454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Tanner JM, Whiteouse RH, Marshall WA et al (1975) Assessment of skeletal maturity and prédiction of aduit height (TW2 method). Academic, London

    Google Scholar 

  59. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity and the stages of puberty. Arch Dis Child 51:170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Tanner JM (1978) Physical growth and development. In: Forfar JO, Arneil GC (eds) Textbook of paediatrics, vol 7, 2nd edn. Churchill Livingstone, New York, p 249

    Google Scholar 

  61. Tanner JM, Davies PSW (1985) Clinical longitudinal standards for height and height velocity for North America children. J Pediatr 107:317

    Article  CAS  PubMed  Google Scholar 

  62. Uhthoff HK (1990) The embryology of the human locomotor system. Springer, New York

    Book  Google Scholar 

  63. Winter RW (1977) Scoliosis and spinal growth. Orthop Rev 6:17

    Google Scholar 

  64. Zhang H, Sucato D, Nuremberg P et al (2008) Characterize neuro-central synchondrosis developmental stages in normal pediatric patients using magnetic resonance imaging. In: Scoliosis Research Society 43rd annual meeting Poster, Salt Lake City

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Dimeglio PhD, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dimeglio, A., Canavese, F., Bonnel, F. (2016). Normal Growth of the Spine and Thorax. In: Akbarnia, B., Yazici, M., Thompson, G. (eds) The Growing Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48284-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48284-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48283-4

  • Online ISBN: 978-3-662-48284-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics