Why Hawking Radiation Cannot Be Decoded

Cold Black Holes and the Harlow–Hayden Proposal
  • Yen Chin OngEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, we come to the main part of the thesis—the extension of the Hiscock and Weems model to charged black holes with a flat horizon in anti-de Sitter spacetime, as a concrete example in checking the Harlow–Hayden conjecture that the black hole lifetime is shorter than the proposed decoding time of Hawking radiation.


Black Hole Event Horizon Quark Gluon Plasma Extremal Black Hole Black Hole Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ong, Y.C., McInnes, B., Chen, P.: Cold black holes in the Harlow-Hayden approach to firewalls. Nucl. Phys. B 891, 627 (2015). arXiv:1403.4886 [hep-th]Google Scholar
  2. 2.
    Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)Google Scholar
  3. 3.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)Google Scholar
  4. 4.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    Rosu, H.C.: On the estimates to measure Hawking effect and Unruh effect in the laboratory. Int. J. Mod. Phys. D 3, 545 (1994). arXiv:gr-qc/9605032 Google Scholar
  6. 6.
    Chen, P., Tajima, T.: Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett. 83, 256 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Chen, P.: Laser cosmology. Eur. Phys. J. ST 223, 1121 (2014). arXiv:1402.5823 [astro-ph.HE]Google Scholar
  8. 8.
    Unruh, W.G.: Has Hawking radiation been measured?. Found. Phys. 44, 532 (2014). arXiv:1401.6612 [gr-qc]Google Scholar
  9. 9.
    Pen, U.-L.: Possible astrophysical observables of quantum gravity effects near black holes. Mon. Not. Roy. Astron. Soc. 445, 3370 (2014). arXiv:1312.4017 [astro-ph.HE]Google Scholar
  10. 10.
    Giddings, S.B.: Possible observational windows for quantum effects from black holes. arXiv:1406.7001 [hep-th]
  11. 11.
    Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? JHEP 1302, 062 (2013). arXiv:1207.3123 [hep-th]
  12. 12.
    Almheiri, A., Marolf, D., Polchinski, J., Stanford, D., Sully, J.: An apologia for firewalls. JHEP 1309, 018 (2013). arXiv:1304.6483 [hep-th]
  13. 13.
    Hwang, D.-I., Lee, B.-H., Yeom, D.-h.: Is the firewall consistent?: Gedanken experiments on black hole complementarity and firewall proposal. JCAP 1301, 005 (2013). arXiv:1210.6733 [gr-qc]Google Scholar
  14. 14.
    Wald, R.M.: The thermodynamics of black holes. Living Rev. Relativity 4 6 (2001). Accessed 8 March 2014
  15. 15.
    Ellis, G.F.R.: Astrophysical black holes may radiate, but they do not evaporate. arXiv:1310.4771 [gr-qc]
  16. 16.
    Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). arXiv:hep-th/9306069 Google Scholar
  17. 17.
    Horowitz, G.T., Maldacena, J.: The black hole final state. JHEP 0402, 008 (2004). arXiv:hep-th/0310281 Google Scholar
  18. 18.
    Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys. 61, 781 (2013). arXiv:1306.0533 [hep-th]Google Scholar
  19. 19.
    Papadodimas, K., Raju, S.: State-dependent bulk-boundary maps and black hole complementarity. Phys. Rev. D 89, 086010 (2014). arXiv:1310.6335 [hep-th]
  20. 20.
    Frolov, V.P.: Information loss problem and a ‘black hole’ model with a closed apparent horizon. JHEP 05, 049 (2014). arXiv:1402.5446 [hep-th]
  21. 21.
    Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Adami, C.: The physics of information. arXiv:quant-ph/0405005
  23. 23.
    Reeb, D., Wolf, M.M.: (Im-)Proving Landauer’s principle. New J. Phys. 16, 103011 (2014). arXiv:1306.4352 [quant-ph]Google Scholar
  24. 24.
    Bekenstein, J.D.: Black holes and information theory. Contemp. Phys. 45, 31 (2003). arXiv:quant-ph/0311049 Google Scholar
  25. 25.
    Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. JHEP 0709, 120 (2007). arXiv:0708.4025 [hep-th]Google Scholar
  26. 26.
    Susskind, L.: Butterflies on the stretched horizon. arXiv:1311.7379 [hep-th]
  27. 27.
    Susskind, L.: Computational complexity and black hole horizons. arXiv:1402.5674 [hep-th]
  28. 28.
    Harlow, D., Hayden, P.: Quantum computation vs. firewalls. JHEP 06, 085 (2013). arXiv:1301.4504 [hep-th]
  29. 29.
    Susskind, L.: Black hole complementarity and the Harlow-Hayden conjecture. arXiv:1301.4505 [hep-th]
  30. 30.
    Braunstein, S.L., Pirandola, S., Życzkowski, K.: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110, 101301 (2013). arXiv:0907.1190 [quant-ph]
  31. 31.
    Ilgin, I., Yang, I.-S.: Energy carries information. Int. J. Mod. Phys. A 29(20), 1450115 (2014). arXiv:1402.0878 [hep-th]Google Scholar
  32. 32.
    Hossenfelder, S., Smolin, L.: Conservative solutions to the black hole information problem. Phys. Rev. D 81, 064009 (2010). arXiv:0901.3156 [gr-qc]
  33. 33.
    Adler, R.J., Chen, P., Santiago, D.I.: The generalized uncertainty principle and black hole remnants. Gen. Relativ. Gravit. 33, 2101 (2001). arXiv:gr-qc/0106080 Google Scholar
  34. 34.
    Aharonov, Y., Casher, A., Nussinov, S.: The unitarity puzzle and Planck mass stable particles. Phys. Lett. B 191, 51 (1987)Google Scholar
  35. 35.
    Banks, T.: Lectures on black hole evaporation and information loss. Nucl. Phys. Proc. Suppl. 41, 21 (1995). arXiv:hep-th/9412131
  36. 36.
    Braunstein S.L., Pirandola, S.: Post-firewall paradoxes. arXiv:1411.7195 [quant-ph]
  37. 37.
    Oppenheim, J., Unruh, W.G.: Firewalls and flat mirrors: an alternative to the AMPS experiment which evades the Harlow-Hayden obstacle. JHEP 1403, 120 (2014). arXiv:1401.1523 [hep-th]
  38. 38.
    Maldacena, J., Michelson, J., Strominger, A.: Anti-de Sitter fragmentation. JHEP 9902, 011 (1999). arXiv:hep-th/9812073 Google Scholar
  39. 39.
    Maldacena, J.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200 Google Scholar
  40. 40.
    Papadodimas, K., Raju, S.: An infalling observer in AdS/CFT. JHEP 1310, 212 (2013). arXiv:1211.6767 [hep-th]
  41. 41.
    Avery, S.G., Chowdhury, B.D.: Firewalls in AdS/CFT. arXiv:1302.5428 [hep-th]
  42. 42.
    Marolf, D., Polchinski, J.: Gauge/gravity duality and the black hole interior. Phys. Rev. Lett. 111, 171301 (2013). arXiv:1307.4706 [hep-th]
  43. 43.
    Papadodimas, K., Raju, S.: The black hole interior in AdS/CFT and the information paradox. Phys. Rev. Lett. 112, 051301 (2014). arXiv:1310.6334 [hep-th]
  44. 44.
    Verlinde, E., Verlinde, H.: Behind the horizon in AdS/CFT. arXiv:1311.1137 [hep-th]
  45. 45.
    Engelhardt, N., Wall, A.C.: Extremal surface barriers. JHEP 1403, 068 (2014). arXiv:1312.3699 [hep-th]
  46. 46.
    Casalderrey-Solana, J., Liu, H., Mateos, D., Rajagopal, K., Wiedemann, U.A.: Gauge/string duality, hot QCD and heavy ion collisions. arXiv:1101.0618 [hep-th]
  47. 47.
    Chernicoff, M., Garcia, J.A., Guijosa, A., Pedraza, J.F.: Holographic lessons for quark dynamics. J. Phys. G G39, 054002 (2012). arXiv:1111.0872 [hep-th]Google Scholar
  48. 48.
    Kim, Y., Shin, I.J., Tsukioka, T.: Holographic QCD: past, present, and future. Prog. Part. Nucl. Phys. 68, 55 (2013). arXiv:1205.4852 [hep-ph]Google Scholar
  49. 49.
    DeWolfe, O., Gubser, S.S., Rosen, C., Teaney, D.: Heavy ions and string theory. Prog. Part. Nucl. Phys. 75, 86 (2014). arXiv:1304.7794 [hep-th]Google Scholar
  50. 50.
    Janik, R.A.: AdS/CFT and applications. PoS EPS-HEP 2013, 141 (2013). arXiv:1311.3966 [hep-ph]
  51. 51.
    Kovtun, P., Son, D.T., Starinets, A.O.: Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). arXiv:hep-th/0405231
  52. 52.
    Müller, B.: Investigation of hot QCD matter: theoretical aspects. Phys. Scripta T 158, 014004 (2013). arXiv:1309.7616 [nucl-th]Google Scholar
  53. 53.
    Ohnishi, A.: Phase diagram and heavy-ion collisions: overview. Prog. Theor. Phys. Suppl. 193, 1 (2012). arXiv:1112.3210 [nucl-th]Google Scholar
  54. 54.
    Mohanty, B.: Exploring the QCD phase diagram through high energy nuclear collisions: an overview. arXiv:1308.3328 [nucl-ex]
  55. 55.
    Satz, H.: Probing the states of matter in QCD. Int. J. Mod. Phys. A 28, 1330043 (2013). arXiv:1310.1209 [hep-ph]Google Scholar
  56. 56.
    Alford, M.G., Rajagopal, K., Schaefer, T., Schmitt, A.: Color superconductivity in dense quark matter. Rev. Mod. Phys. 80, 1455 (2008). arXiv:0709.4635 [hep-ph]Google Scholar
  57. 57.
    Endrodi, G.: QCD phase diagram: overview of recent lattice results. J. Phys. Conf. Ser. 503, 012009 (2014). arXiv:1311.0648 [hep-lat]Google Scholar
  58. 58.
    Selyuzhenkov, I.: Recent experimental results from the relativistic heavy-ion collisions at LHC and RHIC. arXiv:1109.1654 [nucl-ex]
  59. 59.
    Dong, X., (for the STAR Collaboration), Highlights from STAR. Nucl. Phys. A 904-905 19c (2013). arXiv:1210.6677 [nucl-ex]Google Scholar
  60. 60.
    Bleicher, M., Nahrgang, M., Steinheimer, J., Bicudo, P.: Physics prospects at FAIR. Acta Phys. Polon. B 43, 731 (2012). arXiv:1112.5286 [hep-ph]
  61. 61.
    Kekelidze, V.D., Kovalenko, A.D., Meshkov, I.N., Sorin, A.S., Trubnikov, G.V.: NICA at JINR: new prospects for exploration of quark-gluon matter. Phys. Atom. Nucl. 75, 542 (2012)Google Scholar
  62. 62.
    Kumar, L.: Review of recent results from the RHIC beam energy scan. Mod. Phys. Lett. A 28, 1330033 (2013). arXiv:1311.3426 [nucl-ex]Google Scholar
  63. 63.
    Burgio, G.F., Baldo, M., Schulze, H.-J., Sahu, P.K.: The hadron-quark phase transition in dense matter and neutron stars. Phys. Rev. C 66, 025802 (2002). arXiv:nucl-th/0206009
  64. 64.
    Sagert, I., Hempel, M., Pagliara, G., Schaffner-Bielich, J., Fischer, T., Mezzacappa, A., Thielemann, F.-K., Liebendörfer, M.: Signals of the QCD phase transition in core collapse supernovae. Phys. Rev. Lett. 102, 081101 (2009). arXiv:0809.4225 [astro-ph]
  65. 65.
    Chen, P., Labun, L.: Electromagnetic signal of the QCD phase transition in neutron star mergers. Phys. Rev. D 88, 083006 (2013). arXiv:1305.7397 [hep-ph]
  66. 66.
    Sasaki, T., Yasutake, N., Kohno, M., Kouno, H., Yahiro, M.: Determination of quark-hadron transition from lattice QCD and neutron-star observation. arXiv:1307.0681 [hep-ph]
  67. 67.
    Johnson, C.V.: D-branes. Cambridge University Press, Cambridge (2002)Google Scholar
  68. 68.
    McInnes, B.: Bounding the temperatures of black holes dual to strongly coupled field theories on flat spacetime. JHEP 09, 048 (2009). arXiv:0905.1180 [hep-th]Google Scholar
  69. 69.
    Mrówczyński, S.: Quark-gluon plasma. Acta Phys. Polo. B 29, 3711 (1998)Google Scholar
  70. 70.
    Fromerth, M.J., Rafelski, J.: Hadronization of the quark universe. arXiv:astro-ph/0211346
  71. 71.
    Fromerth, M.J., Kuznetsova, I., Labun, L., Letessier, J., Rafelski, J.: From quark-gluon universe to neutrino decoupling: \(200 < T < 2\)MeV. Acta Phys. Polo. B. 43, 2261 (2012). arXiv:1211.4297 [nucl-th]
  72. 72.
    Rafelski, J.: Connecting QGP-heavy ion physics to the early universe. Nucl. Phys. Proc. Suppl. 243-244 155–162 (2013). arXiv:1306.2471 [astro-ph.CO]Google Scholar
  73. 73.
    Hawking, S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152 (1972)Google Scholar
  74. 74.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)Google Scholar
  75. 75.
    Penrose, R.: Gravitational collapse: the role of general relativity. Rivista del Nuovo Cimento 1, 252 (1969)ADSGoogle Scholar
  76. 76.
    Page, D.N.: Particle emission rates from a black hole. 2. Massless particles from a rotating hole. Phys. Rev. D 14, 3260 (1976)Google Scholar
  77. 77.
    Hiscock, W.A., Weems, L.D.: Evolution of charged evaporating black holes. Phys. Rev. D 41, 1142 (1990)ADSCrossRefGoogle Scholar
  78. 78.
    Sorkin, E., Piran, T.: Formation and evaporation of charged black holes. Phys. Rev. D 63, 124024 (2001). arXiv:gr-qc/0103090
  79. 79.
    Murata, K., Reall, H.S., Tanahashi, N.: What happens at the horizon(s) of an extreme black hole? Class. Quantum Gravity 30, 235007 (2013). arXiv:1307.6800 [gr-qc]Google Scholar
  80. 80.
    Kim, K.K., Wen, W.-Y.: Charge-mass ratio bound and optimization in the Parikh-Wilczek tunneling model of Hawking radiation. Phys. Lett. B 731C, 307 (2014). arXiv:1311.1656 [gr-qc]Google Scholar
  81. 81.
    Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)Google Scholar
  82. 82.
    Surya, S., Schleich, K., Witt, D.M.: Phase transitions for flat AdS black holes. Phys. Rev. Lett. 86, 5231 (2001). arXiv:hep-th/0101134 Google Scholar
  83. 83.
    Horowitz, G.T., Myers, R.C.: The AdS/CFT correspondence and a new positive energy conjecture for general relativity. Phys. Rev. D 59, 026005 (1998). arXiv:hep-th/9808079
  84. 84.
    Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). arXiv:hep-th/9803131 Google Scholar
  85. 85.
    Gubser, S.S.: Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D 78, 065034 (2008). arXiv:0801.2977 [hep-th]
  86. 86.
    Gubser, S.S., Nellore, A.: Ground states of holographic superconductors. Phys. Rev. D 80, 105007 (2009). arXiv:0908.1972 [hep-th]
  87. 87.
    Andronic, A., Blaschke, D., Braun-Munzinger, P., Cleymans, J., Fukushima, K., McLerran, L.D., Oeschler, H., Pisarski, R.D., Redlich, K., Sasaki, C., Satz, H., Stachel, J.: Hadron production in ultra-relativistic nuclear collisions: quarkyonic matter and a triple point in the phase diagram of QCD. Nucl. Phys. A 837, 65 (2010). arXiv:0911.4806 [hep-ph]Google Scholar
  88. 88.
    de Boer, J., Chowdhury, B.D., Heller, M.P., Jankowski, J.: Towards a holographic realization of the quarkyonic phase. Phys. Rev. D 87, 066009 (2013). arXiv:1209.5915 [hep-th]
  89. 89.
    Seiberg, N., Witten, E.: The D1/D5 system and singular CFT. JHEP 9904, 017 (1999). arXiv:hep-th/9903224 Google Scholar
  90. 90.
    Kleban, M., Porrati, M., Rabadan, R.: Stability in asymptotically AdS spaces. JHEP 0508, 016 (2005). arXiv:hep-th/0409242 Google Scholar
  91. 91.
    Barbón, J.L.F., Martínez-Magán, J.: Spontaneous Fragmentation of Topological Black Holes. JHEP 08, 031 (2010). arXiv:1005.4439 [hep-th]
  92. 92.
    McInnes, B.: A universal lower bound on the specific temperatures of AdS-Reissner-Nordström black holes with flat event horizons. Nucl. Phys. B 848, 474 (2011). arXiv:1012.4056 [hep-th]Google Scholar
  93. 93.
    McInnes, B.: Shearing black holes and scans of the quark matter phase diagram. Class. Quantum Gravity 31, 025009 (2014). arXiv:1211.6835 [hep-th]Google Scholar
  94. 94.
    Rocha, J.V.: Evaporation of large black holes in AdS: coupling to the evaporon. JHEP 0808, 075 (2008). arXiv:0804.0055 [hep-th]Google Scholar
  95. 95.
    Van Raamsdonk, M.: Evaporating firewalls. JHEP 11, 038 (2014). arXiv:1307.1796 [hep-th]
  96. 96.
    Brown, A.R.: Tensile strength and the mining of black holes. Phys. Rev. Lett. 111, 211301 (2013). arXiv:1207.3342 [gr-qc]
  97. 97.
    Israel, W.: Black hole thermodynamics. Lect. Notes Phys. 617, 15 (2003)ADSCrossRefGoogle Scholar
  98. 98.
    Birmingham, D.: Topological black holes in anti-de Sitter space. Class. Quantum Gravity 16, 1197 (1999). arXiv:hep-th/9808032 Google Scholar
  99. 99.
    Klemm, D., Vanzo, L.: Quantum properties of topological black holes. Phys. Rev. 58, 104025 (1998). arXiv:gr-qc/9803061
  100. 100.
    Bianchi, E., Smerlak, M.: Last gasp of a black hole: unitary evaporation implies non-monotonic mass loss. Gen. Relativ. Gravit. 46, 1809 (2014). arXiv:1405.5235 [gr-qc]
  101. 101.
    Bianchi, E., Smerlak, M.: Entanglement entropy and negative energy in two dimensions. Phys. Rev. D 90, 041904 (2014). arXiv:1404.0602 [gr-qc]
  102. 102.
    Abdolrahimi, S., Page, D.N.: Hawking radiation energy and entropy from a Bianchi-Smerlak semiclassical black hole. Phys. Rev. D 92, 083005 (2015). arXiv:1506.01018 [hep-th]
  103. 103.
    Good, M.R.R., Ong, Y.C.: Signatures of energy flux in particle production: a black hole birth cry and death gasp. JHEP 07, 145 (2015). arXiv:1506.08072 [gr-qc]
  104. 104.
    Davies, P.: Thermodynamic theory of black holes. Proc. R. Soc. Lond. A 353, 499 (1977)ADSCrossRefGoogle Scholar
  105. 105.
    Page, D.N.: Finite upper bound for the Hawking decay time of an arbitrarily large black hole in anti-de Sitter spacetime. arXiv:1507.02682 [hep-th]
  106. 106.
    Ong, Y.C.: Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime. arXiv:1507.07845 [gr-qc]
  107. 107.
    McInnes, B.: Holography of the quark matter triple point. Nucl. Phys. B 832, 323 (2010). arXiv:0910.4456 [hep-th]Google Scholar
  108. 108.
    Chen, C.-M., Kim, S.P., Lin, I.-C., Sun, J.-R., Wu, M.-F.: Spontaneous pair production in Reissner-Nordström black holes. Phys. Rev. D 85, 124041 (2012). arXiv:1202.3224 [hep-th]
  109. 109.
    Kim, S.P., Page, D.N.: Schwinger pair production in dS\(_2\) and AdS\(_2\). Phys. Rev. D 78, 103517 (2008). arXiv:0803.2555 [hep-th]
  110. 110.
    Pioline, B., Troost, J.: Schwinger pair production in AdS\(_2\). JHEP 0503, 043 (2005). arXiv:hep-th/0501169
  111. 111.
    Ong, Y.C., Chen, P.: Charge loss (or the lack thereof) for AdS black holes. JHEP 06, 061 (2014). arXiv:1404.5215 [gr-qc]
  112. 112.
    Stuchlík, Z., Hledík, S.: Properties of the Reissner-Nordström spacetimes with a nonzero cosmological constant. Acta Physica Slovaca 52(5), 363 (2002). arXiv:0803.2685 [gr-qc]
  113. 113.
    Villanueva, J.R., Saavedra, J., Olivares, M., Cruz, N.: Photons motion in charged anti-de Sitter black holes. Astrophys. Space Sci. 344, 437 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Nordic Institute for Theoretical PhysicsStockholmSweden

Personalised recommendations