Skip to main content

A Simplified Nyström-Tree Theory for ERKN Integrators Solving Oscillatory Systems

  • Chapter
  • First Online:
Structure-Preserving Algorithms for Oscillatory Differential Equations II
  • 574 Accesses

Abstract

In the study of extended Runge-Kutta-Nyström (ERKN) methods for the integration of multi-frequency oscillatory systems, a quite complicated set of algebraic conditions arises which must be satisfied for a method to achieve some specified order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boik RJ (2006) Lecture notes: statistics, vol 550. Spring. http://www.math.montana.edu/~rjboik/classes/550/notes.550.06.pdf, pp 33–35

  2. Butcher JC (1972) An algebraic theory of integration methods. Math Comp 26:79–106

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher JC (2008) Numerical methods for ordinary differential equations, 2nd edn. Wiley, Chichester

    Book  MATH  Google Scholar 

  4. Coleman JP, Ixaru L Gr (1996) P-stability and exponential-fitting methods for \(y^{\prime \prime } = f(x, y)\). IMA J Numer Anal 16:179–199

    Google Scholar 

  5. Deuflhard P (1979) A study of extrapolation methods based on multistep schemes without parasitic solutions. Z Angew Math Phys 30:177–189

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang Y, Wu X (2008) A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl Numer Math 58:341–351

    Article  MathSciNet  MATH  Google Scholar 

  7. Gautschi W (1961) Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer Math 3:381–397

    Article  MathSciNet  MATH  Google Scholar 

  8. Hairer E (1976/1977) Méthodes de Nyström pour l’équation différentielle \(y^{\prime \prime }=f(x,y)\). Numer Math 27:283–300

    Google Scholar 

  9. Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration, structure-preserving algorithms for ordinary differential equations, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  10. Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differnetial equations I, nonstiff problems. Springer series in computational mathematics, 2nd edn. Springer, Berlin

    Google Scholar 

  11. Hairer E, Wanner G (1974) On the Butcher group and general nulti-value methods. Computing 13:1–15

    Article  MathSciNet  MATH  Google Scholar 

  12. Hairer E, Wanner G (1975/1976) A theory for Nyström methods. Numer Math 25:383–400

    Google Scholar 

  13. Hochbruck M, Lubich C (1999) A Gsutschi-type method for oscillatory second-order differential equations. Numer Math 83:403–426

    Article  MathSciNet  MATH  Google Scholar 

  14. Hochbruck M, Lubich C (1999) Exponential integrators for quantum-classical molecular dynamics. BIT Numer Math 39:620–645

    Article  MathSciNet  MATH  Google Scholar 

  15. Li J, Wang B, You X, Wu X (2011) Two-step extended RKN methods for oscillatory systems. Comput Phys Commun 182:2486–2507

    Article  MathSciNet  MATH  Google Scholar 

  16. Li J, Wu X (2013) Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer Algo 62:355–381

    Article  MathSciNet  MATH  Google Scholar 

  17. Murua A, Sanz-Serna JM (1999) Order conditions for numerical integrators obtained by composing simpler integrators, Philos Trans Royal Soc London, ser A 357:1079–1100

    Google Scholar 

  18. Nyström EJ (1925) Ueber die numerische Integration von Differentialgleichungen. Acta Soc Sci Fenn 50:1–54

    Google Scholar 

  19. Shi W, Wu X, Xia J (2012) Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J Comput Phys 231:7671–7694

    Article  MathSciNet  MATH  Google Scholar 

  20. Simos TE (1998) An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput Phys Commun 115:1–8

    Article  MathSciNet  MATH  Google Scholar 

  21. Vanden Berghe G, Daele MV, Vyver HV (2003) Exponential fitted Runge-Kutta methods of collocation type: fixed or variable knot points? J Comput Appl Math 159:217–239

    Article  MathSciNet  MATH  Google Scholar 

  22. Vanden Berghe G, De Meyer H, Daele MV, Hecke TV (1999) Exponentially-fitted Runge-Kutta methods. Comput Phys Commun 123:7–15

    Article  MathSciNet  MATH  Google Scholar 

  23. Vanden Berghe G, De Meyer H, Van Daele M, Van Hecke T (2000) Exponentially-fitted explicit Runge-Kutta methods. J Comput Appl Math 125:107–115

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang B, Wu X (2012) A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys Lett A 376:1185–1190

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang B, Wu X (2013) A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J Comput Phys 243:210–223

    Article  MathSciNet  Google Scholar 

  26. Wang B, Wu X, Zhao H (2013) Novel improved multidimensional Strömer-Verlet formulas with applications to four aspects in scientific computation. Math Comput Model 57:857–872

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu X (2012) A note on stability of multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems. Appl Math Model 36:6331–6337

    Article  MathSciNet  Google Scholar 

  28. Wu X, Wang B, Liu K, Zhao H (2013) ERKN methods for long-term integration of multidimensional orbital problems. Appl Math Model 37:2327–2336

    Article  MathSciNet  Google Scholar 

  29. Wu X, Wang B, Shi W (2013) Efficient energy-perserving integrators for oscillatory Hamiltonian systems. J Comput Phys 235:587–605

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu X, Wang B, Shi W (2013) Effective integrators for nonlinear second-order oscillatory systems with a time-dependent frequency matrix. Appl Math Model 37:6505–6518

    Article  MathSciNet  Google Scholar 

  31. Wu X, Wang B, Xia J (2010) Extended symplectic Runge-Kutta-Nyström integrators for separable Hamiltonian systems. In: Vigo Aguiar J (ed) Proceedings of the 2010 international conference on computational and mathematical methods in science and engineering, vol III. Spain, pp 1016–1020

    Google Scholar 

  32. Wu X, Wang B, Xia J (2012) Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods. BIT Numer Math 52:773–795

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu X, You X, Wang B (2013) Structure-preserving algorithms for oscillatory differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  34. Wu X, You X, Shi W, Wang B (2010) ERKN integrators for systems of oscillatory second-order differential equations. Comput Phys Commun 181:1873–1887

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang H, Wu X (2008) Trigonometrically-fitted ARKN methods for perturbed oscillators. Appl Numer Math 58:1375–1395

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang H, Wu X, You X, Fang Y (2009) Extended RKN-type methods for numerical integration of perturbed oscillators. Comput Phys Commun 180:1777–1794

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang H, Zeng X, Wu X, Ru Z (2014) A simplified Nyström-tree theory for extended Runge-Kutta-Nyström integrators solving multi-frequency oscillatory systems. Accepted Manuscript by Comput Phys Commun 185:2841–2850

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg and Science Press, Beijing, China

About this chapter

Cite this chapter

Wu, X., Liu, K., Shi, W. (2015). A Simplified Nyström-Tree Theory for ERKN Integrators Solving Oscillatory Systems. In: Structure-Preserving Algorithms for Oscillatory Differential Equations II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48156-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48156-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48155-4

  • Online ISBN: 978-3-662-48156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics