Skip to main content

Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study

  • REGULAR ARTICLE
  • Chapter
  • First Online:

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 9))

Abstract

The optical properties of intra-4fN transitions (f–f transitions) in lanthanide compounds are usually insensitive to the surrounding environment due to the shielding effect of the outer 5s and 5p electrons. However, there are exceptional transitions, the so-called hypersensitive transitions, whose oscillator strengths change sensitively to a small change of the surrounding environment. The mechanism of the hypersensitive transitions was explained mostly with the dynamic-coupling (DC) model. In this study, the oscillator strengths of hypersensitive transitions in lanthanide trihalides (LnX3; Ln = Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm; X = Cl, Br, I) were calculated by the multi-reference spin–orbit configuration interaction (CI) method, and the origin of the hypersensitive transition intensities was examined. To compare the intensities derived from the DC model and from the ab initio CI computations, we evaluated two Judd–Ofelt intensity parameters: τ2(dc) by the DC model and τ2(ab) by the CI computations. Although these two parameters showed similar overall behaviors, their Ln dependences were different, suggesting the involvement of other mechanism(s) in τ2(ab). Close examination of the spatial distributions of the transition densities and the integrand of the transition dipole moments (TDMs) suggested that the Judd–Ofelt theory contributions were also involved in s2(ab) with the opposite sign relative to the TDMs with the DC model in all the hypersensitive transitions of LnX3. Moreover, the different Ln dependences in τ2(dc) and τ2(ab) were related to the different amount of the mixing of ligand-to-metal charge transfer configurations into the dominant 4fN configurations, especially for Eu and Tb.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yabushita .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hatanaka, M., Yabushita, S. (2016). Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study. In: Shepard, R., Pitzer, R., Dunning, T. (eds) Isaiah Shavitt. Highlights in Theoretical Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48148-6_20

Download citation

Publish with us

Policies and ethics