Advertisement

Einführung in die Osteoradiologie

  • J. Freyschmidt

Zusammenfassung

Das Skelett dient als Stützorgan, Mineralreservoir und Ort der Blutbildung. Der erwachsene Mensch hat etwa 206 Knochen mit einem Anteil von 15 % am Gesamtkörpergewicht. Der Knochen besteht zu etwa 40–45 % aus Mineralien, 10–15 % aus zellulären Knochenmarkbestandteilen und Wasser sowie 40–45 % aus organischem Material. Letzteres setzt sich zu etwa 90 % aus Kollagen vom Typ I und zu 10 % aus nichtkollagenen Proteinen zusammen. Das Knochenwachstum geschieht über eine enchondrale und intramembranöse Ossifikation. Die zellulären Grundelemente des Knochens sind die Osteoblasten, Osteoklasten und der Osteozyt. Der Knochen unterliegt einem permanenten Umbau (»remodeling«). Das Arsenal der Knochenbildgebung besteht aus Projektionsradiografie, CT, MRT, Szintigrafie inkl. SPECT, PET, PET-CT, Ultraschall und CT-gesteuerter Biopsie. Entscheidend für den Erfolg der radiologischen Diagnostik ist die systematische Bildinterpretation mit korrekter Zuordnung des pathologisch-anatomischen Hintergrunds und zu einer der sieben Grundentitäten der Knochenveränderungen.

Literatur

  1. Abrahams JJ (1998) Mandibular sigmoid notch: a window for CT-guided biopsies of lesions in the peripharyngeal and skull-base region. Radiology 208:69–5CrossRefGoogle Scholar
  2. Ahlström KH, Astrom KG (1993) CT-guided bone biopsy performed by means of a coaxial biopsy system with an excentric drill. Radiology 188:549 Allwright SJ, Miller JH, Gilsanz V (1991) Subperiosteal abscess in children: scintigrafic appearance. Radiology 179:72–5Google Scholar
  3. Aoki J, Watanabe N, Shinozaki T et al (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:77–4CrossRefGoogle Scholar
  4. Assoun J, Richardi G, Railhac JJ et al (1994) Osteoid osteoma: MR imaging versus CT. Radiology 191:21–7CrossRefGoogle Scholar
  5. Ayala AG, Raymond AK, Ro JY et al (1989) Needle biopsy of primary bone lesions. M.D. Anderson experience. Path Annal 24:21–9Google Scholar
  6. Baron R, Hesse E (2012) Update on bone anabolics in osteoporosis treatment: Rationale, current status, and perspectives. J Clin Endocrinol Mertab 97:31–1Google Scholar
  7. Byun BH, Kong CB, Lim I (2013) Comparison of (18)F-FDG PET/CT and (99m) Tc-MDP bone szintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol 42:167–3CrossRefGoogle Scholar
  8. Baker LL, Goodman SB, Perkash I et al (1990) Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spinecho, chemical-shift, and STIR MR imaging. Radiology 174:49–5CrossRefGoogle Scholar
  9. Baum RP, Brandhorst I, Maul FD (1985) Extraossäre Nuklidanreicherungen im Rahmen der Skelettszintigrafie. RÖFO 143:24–7Google Scholar
  10. Becker W, Horneff G, Emmrich F et al (1992) Kinetics of 99mTc-labeled antibodies against CD4 (T-helper) lymphocytes. Nuklearmedizin 31:8–4Google Scholar
  11. Beckers C, Ribbens C, André B et al (2004) Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J Nucl Med 45:95–6Google Scholar
  12. Beckmann N, Falk R, Zurbrugg S et al (2003) Macrophage infiltration into the rat knee detected by MRI in a model of antigen-induced arthritis. Magn Reson Med 49:104–7Google Scholar
  13. Berning W, Freyschmidt J, Ostertag H (1996) Percutaneous bone biopsy. Eur Radiol 9:875–881Google Scholar
  14. Bogost GA, Lizerbram EK, Crues JV (1995) MR imaging in evaluation of suspected hip fracture: frequency of unsuspected bone and soft-tissue imaging. Radiology 197:26–3CrossRefGoogle Scholar
  15. Bredella MA, Essary B, Torriani M et al (2008) Use of FDG-PET in differentiation benign from malignant compression fractures. Skeletal Radiol 37:40–5CrossRefGoogle Scholar
  16. Brossmann J, Czerny C, Freyschmidt J (2001) Freyschmidts »Köhler-Zimmer«. Grenzen des Normalen und Anfänge des Pathologischen in der Radiologie des kindlichen und erwachsenen Skeletts. 14. Auflage, Thieme Verlag, Stuttgart, New YorkGoogle Scholar
  17. Cantor RM, Kattan ICR (1993) A sign for the early detection of medullary sklerosis. Skeletal Radiol 22:4–3CrossRefGoogle Scholar
  18. Carty H, Maxted M, Fielding JA et al (1984) Isotope scanning in the »irritable hip syndrome«. Skeletal Radiol 11:3–2CrossRefGoogle Scholar
  19. Chapman PT, Jamar F, Keelan ET et al (1996) Use of radiolabeled monoclonal antibody against E-selectin for imaging. Arthritis Rheum 39:137–1CrossRefGoogle Scholar
  20. Chen WT Shih TT, Chen RC (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220:21–3CrossRefGoogle Scholar
  21. Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy indused changes of bone marrow. Skeletal Radiol 17:74–3Google Scholar
  22. Deutsch AL, Mink JH, Waxman AD (1989) Occult fractures of the proximal femur: MR imaging. Radiology 170:11–3CrossRefGoogle Scholar
  23. Dewes W, Ruhlmann J, Loos U et al (1988) MR-Tomografie bei lymphatischen und leukämischen Knochenmarkinfiltrationen. RÖFO 147:65–4Google Scholar
  24. Dooms GC, Fisher MR, Hricak H et al (1985) Bone marrow imaging: magnetic resonance studies related to age and sex. Radiology 155:42–9Google Scholar
  25. Ehman RL, Berquist TH, McLeod RA (1988) MR imaging of the musculoskeletal system: a 5-year appraisal Radiology 166:31–3CrossRefGoogle Scholar
  26. Falck von C, Raatschen HJ, Bengel FM (2011) Artefakte und Fallstricke in der onkologischen 18-F-FDG-PET-CT-Diagnostik. Radiologie update 4:29–5Google Scholar
  27. Feldman F, van Heertum R, Manos C (2003) 18FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 32:20–1CrossRefGoogle Scholar
  28. Fletcher BD, Crom DB, Krana RA et al (1994) Radiation-induced bone abnormalities after bone marrow transplantation for childhood leukemia. Radiology 191:23–1CrossRefGoogle Scholar
  29. Frager DH, Goldman MJ, Seimon LP et al (1987) Computed tomography guidance for skeletal biopsy. Skeletal Radiol 16:64–4CrossRefGoogle Scholar
  30. Freyschmidt J (1985) Qualitätssicherung in der Röntgendiagnostik des Skeletts. In: Stender HS, Stieve FE Qualitätssicherung in der Röntgendiagnostik. Thieme, Stuttgart, S 56–62Google Scholar
  31. Freyschmidt J, Freyschmidt JC (1999) Über die Verantwortlichkeiten des Radiologen in der Skelettradiologie. Haftungsrechtliche Aspekte in der Konsiliartätigkeit. Fortschr Röntgenstr 170:1–6CrossRefGoogle Scholar
  32. Freyschmidt J, Ostertag H (2010) Knochentumoren, 3. Aufl. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  33. Freyschmidt,J (2012) Knochen(mark)ödem in der MRT -Befund oder nur Signal? Ein kurzer Blick hinter den Spiegel. Z Rheumatol 71:1–2CrossRefGoogle Scholar
  34. Freyschmidt J (2013) Schwierige Diagnosen in der Skelettradiologie, Thieme-Verlag, StuttgartGoogle Scholar
  35. Freyschmidt J (2015) Zufallsbefunde in der Skelettradiologie, Thieme-Verlag, StuttgartGoogle Scholar
  36. Frost HM (1964) Dynamics of bone remodeling. In: Frost HM Bone biodynamics. Little and Brown, BostonGoogle Scholar
  37. Gaston LL, Di Bella C, Slavin J (2011) 18F-FDG PET response to neoadjuvant chemotherapy for Ewing-sarcoma and osteosarcoma are different. Skeletal Radiol. 40(8) 100–7CrossRefGoogle Scholar
  38. Gatenby RA, Mulhern CH B, Moldofsky PH J (1984) Computed tomography guided thin needle biopsy of small lytic bone lesions. Skeletal Radiol 11:28–9CrossRefGoogle Scholar
  39. Gillespy TH, Manfrini M, Ruggieri P et al (1988) Staging of intraosseous extent of osteosarcoma: correlation of preoperative CT and MR imaging with pathologic macroslides. Radiology 167:76–5CrossRefGoogle Scholar
  40. Gold RH, Bassett LW (1986) Radionuclide evaluation of skeletal metastases: Practical considerations. Skeletal Radiol 15:1PubMedCrossRefGoogle Scholar
  41. Gückel F, Semmler W, Döhner H et al (1989) Kernspintomographische Darstellung von Knochenmarkinfiltrationen bei malignen Lymphomen. RÖFO 150:2–6Google Scholar
  42. Hadizadeh DR, Merx C, Gieseke J et al (2014) Zeitlich und räumlich hochaufgelöste MR-Angiografie (»4D-MRA«). Fortschr. Röntgenstr. 186:84–7Google Scholar
  43. Hamers S, Freyschmidt J, Neitzel U (2001) Digital radiography with a large scale electronic flat panel detector vs screen-film radiography: observer preference in clinical skeletal diagnostics. Eur Radiol 11:175–3CrossRefGoogle Scholar
  44. Hanna SL, Fletcher BD, Fairclough DL et al (1991) Magnetic resonance imaging of disseminated bone marrow disease in patients treated for malignancy. Skeletal Radiol 20:7–9CrossRefGoogle Scholar
  45. Haramati N, Staron RB, Barax C et al (1994) Magnetic resonance imaging of occult fractures of the proximal femur. Skeletal Radiol 23:1–9Google Scholar
  46. Hattner RS (1982) Characterization of radiation induced photopenic abnormalities on bone scans. Radiology 145:16–1CrossRefGoogle Scholar
  47. Hau MA, Kim J, Kattapuram S et al (2002) Accuracy of CT-guided biopsies in 359 patients with musculoskeletal lesions. Skeletal Radiol 31:34–9CrossRefGoogle Scholar
  48. Hauenstein KH, Nimmer B, Beck A et al (1988) Knochenbiopsie unklarer Knochenläsionen mit einer neuen 1,4 mm messenden Biopsiekanüle. Radiologe 28:25–1Google Scholar
  49. Haughton VM (1988) MR imaging of the spine. Radiology 166:29–7Google Scholar
  50. Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:882–8CrossRefGoogle Scholar
  51. Hawkins DS, Rajendran JE, Conrad EU III, Brukner JD, Eary JF (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 94:327–7CrossRefGoogle Scholar
  52. Hendrick WR, DiSimone RN, Wolf BH et al (1988) Absorbed dose to the fetus during bone scintigraphy. Radiology 168:24–5CrossRefGoogle Scholar
  53. Henschel MG, Freyschmidt J, Holland RB (1995) Experimentelle Untersuchungen zur Darstellbarkeit von Wirbelkörperspongiosa in der hochauflösenden Computertomografie. RÖFO 162:26–9Google Scholar
  54. Hewes RC, Vigorita VJ, Freiberger RH (1983) Percutaneous bone biopsy: the importance of aspirated osseous blood. Radiology 148:6–9CrossRefGoogle Scholar
  55. Hotze A, Löw A, Mahlstedt JE et al (1984) Kombinierte Knochenmark- und Skelettszintigrafie bei ossären und myelogenen Erkrankungen. RÖFO 140:71–7Google Scholar
  56. Iaccarino V, Sadile F, Vetrani A et al (1990) Percutaneous intralesional brushing of cystic lesions of bone: a technical improvement of diagnostic cytology. Skeletal Radiol 19:18–7CrossRefGoogle Scholar
  57. Jadvar H, Conti TS (2002) Diagnostic utility of FDG PET in multiple myeloma. Skeletal Radiol 31:69–0CrossRefGoogle Scholar
  58. Jaworski ZFG (1984) Coupling or bone formation to bone resorption: A broader view. Calcif Tissue Int 36:53–1CrossRefGoogle Scholar
  59. Just M, Gutjahr P, Higer HP (1987) Möglichkeiten der MR-Tomografie in der Therapiekontrolle maligner Knochentumoren. RÖFO 147:41–3Google Scholar
  60. Kattapuram SV, Rosenthal DI (1987) Percutaneous biopsy of the cervical spine using CT guidance. AJR 149:53–9CrossRefGoogle Scholar
  61. Keck E (1989) Physiologie des Knochenstoffwechsels. Z Rheumatol 38:3Google Scholar
  62. Kurata S, Shizukuishi K, Tateishiki U et al (2012). Age-related changes in pre-and postmenopausal women investigated with 18-F-fluoride PET - a preliminary study. Skeletal Radiol 41:94–7CrossRefGoogle Scholar
  63. Lang P, Fritz R, Vahlensiek M et al (1992) Residuales und rekonvertiertes Knochenmark im distalen Femur. RÖFO 156:8–9Google Scholar
  64. Lang P, Fritz R, Majumdar S et al (1993) Hematopoetic bone marrow in the adult knee: spin-echo and opposed-phase gradient-echo MR imaging. Skeletal Radiol 22:9–5CrossRefGoogle Scholar
  65. Levine CD, Schweitzer ME, Ehrlich SM (1994) Pelvic marrow in adults. Skeletal Radiol 23:34–3CrossRefGoogle Scholar
  66. Linden A, Zankovich R, Theissen P et al (1989) Malignant lymphoma: bone marrow imaging versus biopsy. Radiology 173:33–5CrossRefGoogle Scholar
  67. Link TM, Vieth V, Stehling C (2003) High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol 13:66–3CrossRefGoogle Scholar
  68. MacLarnon JC (1982) Biopsy of the spine using a needle with a rigid guide wire. Clin Radiol 33:18–9CrossRefGoogle Scholar
  69. Mandell GA, Harcke HT (1993) Scintigraphy of spinal disorders in adolescents. Skeletal Radiol 22:39–3CrossRefGoogle Scholar
  70. Massie JD, Sebes JI (1988) The headless bone scan: an uncommon manifestation of metastatic superscan in carcinoma of the prostate. Skeletal Radiol 17:11–1CrossRefGoogle Scholar
  71. McAfee JG (1987) Radionuclide imaging in metabolic and systemic skeletal diseases. Semin Nucl Med 174:33–4Google Scholar
  72. McCredie J (2007) Nerve in bone: the silent partners. Skeletal Radiol 36:47–3CrossRefGoogle Scholar
  73. McKinstry P, Schnitzer JE, Light TR et al (1982) Relationship of 99mTc-MDP uptake to regional osseous circulation in skeletally immature and mature dogs. Skeletal Radiol 8:11–5CrossRefGoogle Scholar
  74. Modic MT, Pavlicek W, Weinstein MA et al (1989) Magnetic resonance imaging of intervertebral disk disease. Radiology 152:10–3Google Scholar
  75. Montazel JL, Divine M, Lepaye E et al (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229:70–3CrossRefGoogle Scholar
  76. Moore SHG, Dawson KL (1990) Red and yellow marrow in the femur: agerelated changes in appearance at MR imaging. Radiology 175:21–9Google Scholar
  77. Mosher TJ (2002) Diagnostic effectiveness of gadolinium-enhanced MR imaging in evaluation of abnormal bone marrow signal Radiology 224:32–0CrossRefGoogle Scholar
  78. Murray IPC (1980) Bone scanning in the child and young adult. Skeletal Radiol 5:1PubMedCrossRefGoogle Scholar
  79. Murray IPC, Dixon J (1989) The role of single photon emission computed tomography in bone scintigraphy. Skeletal Radiol 18:49–3Google Scholar
  80. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234PubMedCrossRefGoogle Scholar
  81. Oestreich AE (2003a) The acrophysis: a unifying concept for enchondral bone growth and its disorders. I. Normal growth. Skeletal Radiol 32:12–1CrossRefGoogle Scholar
  82. Oestreich AE (2003b) The acrophysis: a unifying concept for enchondral bone growth and its disorders. II. Abnormal growth. Skeletal Radiol 33:11–9Google Scholar
  83. Pettersson H, Slone RM, Spanier S et al (1988) Musculoskeletal tumors: T1 and T2 relaxation times. Radiology 167:78–3CrossRefGoogle Scholar
  84. Ranner G, Fueger GF, Hörmann M (1987) Ergebnisse der Knochenmarkszintigrafie bei hämatologischen Erkrankungen. RÖFO 146:30–0Google Scholar
  85. Reekers JA (2014) The spider model for clinical involvement in radiology. Insight into Imaging 5:40–3Google Scholar
  86. Resch H, Battmann A (1995) Die Bedeutung von Wachstumsfaktoren und Zytokinen im Knochenstoffwechsel und Remodeling. Osteologie 4:13–7Google Scholar
  87. Reuther G, Mutschler W (1990) Detection of local recurrent disease in musculoskeletal tumors: magnetic resonance imaging versus computed tomography. Skeletal Radiol 19:8–5CrossRefGoogle Scholar
  88. Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:8–3CrossRefGoogle Scholar
  89. Richardson ML, Patten RM (1994) Age-related changes in marrow distribution in the shoulder: MR imaging findings. Radiology 192:20–9CrossRefGoogle Scholar
  90. Roberts CC, Morrison WB, Leslie KO (2005) Assessment of bone biopsy needles for sample size, specimen quality and ease of use. Skeletal Radiol 34:32–9CrossRefGoogle Scholar
  91. Schajowicz F, Derqui JC (1968) Puncture biopsy in lesions of the locomotor system: review of results in 4050 cases, including 941 vertebral punctures. Cancer 21:53–1CrossRefGoogle Scholar
  92. Schweitzer ME, White LE (1996) Does altered biomechanics cause marrow edema? Radiology 198:85–1CrossRefGoogle Scholar
  93. Seabold JE, Nepola JV, Marsh JL et al (1991) Postoperative bone marrow alterations: potential pitfalls in the diagnosis of osteomyelitis with In-111-labeled leukocyte scintigraphy. Radiology 180:7–4CrossRefGoogle Scholar
  94. Shin DS, Shon OJ, Byun SJ et al (2008) Differentiation between malignant and benign pathologic fractures with F 18-fluoro-2-desoxy-D-glucose positron emission tomography/computed tomography. Skeletal Radiol 37:41–5CrossRefGoogle Scholar
  95. Stäbler A, Freyschmidt J (2004) Handbuch Diagnostische Radiologie. Muskuloskelettales System I. Springer Heidelberg Berlin New YorkGoogle Scholar
  96. Stender HS (Hrsg) (1989) Leitlinien der BÄK zur Qualitätssicherung in der Röntgendiagnostik. Dtsch Ärzteblatt 86/27: A-2024–2026Google Scholar
  97. Stevens SK, Moore SHG, Amylon MD (1990) Repopulation of marrow after transplantation: MR imaging with pathologic correlation. Radiology 175:21–3CrossRefGoogle Scholar
  98. Sundaram M, McGuire MH (1988) Computed tomography or magnetic resonance for evaluating the solitary tumor or tumor-like lesion of bone? Skeletal Radiol 17:39–3Google Scholar
  99. Sundaram M, McGuire MH, Fletcher J et al (1986) Magnetic resonance imaging of lesions of synovial origin. Skeletal Radiol 15:11–0Google Scholar
  100. Taljanovic MS, Hunter TB, Fitzpatrick KA (2003) Musculoskeletal magnetic resonance imaging: importance of radiography. Skeletal Radiol 32:40–3CrossRefGoogle Scholar
  101. Tiedjen KU, Franke R, Wortmann FD (1984) Das Verhalten frischer Wirbelkörperfrakturen im Skelettszintigramm. RÖFO 140:45–2Google Scholar
  102. Van den Berg B, Malghem, Lakaisse MA et al (1993) Apparent focal bone marrow ischemia in patients with marrow disorders: MR studies. J Comput Assist Tomogr 17:79–2Google Scholar
  103. Van den Berg BC, Malghem, Lecouvet FE et al (1998) Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol 27:47–1Google Scholar
  104. Vittali HP (1970) Knochenerkrankungen, Histologie und Klinik. Sandoz, NürnbergGoogle Scholar
  105. Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:67–9CrossRefGoogle Scholar
  106. Wang X, Rosol M, Ge S et al (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102:347–8Google Scholar
  107. Weissleder R, Mahmoud U (2001) Molecular imaging. Radiology 219:316 Wiens J (2007) Perkutane Biopsien am Bewegungsapparat. Radiologie up 2 date 3 (2007):205–222Google Scholar
  108. Wu Q, Yang R, Zhou F (2013) Comparison of whole-body MRI and skeletal szintigraphy for detection of bone metastatic tumors-a metanalysis. Surg Oncol 22:26–1CrossRefGoogle Scholar
  109. Yao L, Lee JK (1988) Occult intraosseous fracture: detection with MR imaging. Radiology 167:74–9CrossRefGoogle Scholar
  110. Zimmer WD, Berquist TH, McLeod RA et al (1985) Bone tumors: magnetic resonance imaging versus computed tomography. Radiology 155:70–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. Freyschmidt
    • 1
  1. 1.Klinikum Bremen-Mitte Beratungsstelle und ReferenzzentrumBremen

Personalised recommendations