Skip to main content

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 2583 Accesses

Abstract

Observations show that, at least in our astronomical neighborhood, the Universe is matter-dominated. The amount of antimatter is very small and it can be explained by its secondary production in high energy cosmic ray collisions or in catastrophic astrophysical phenomena. While there are many potentially possible scenarios proposed in the literature for the creation of the observed matter-antimatter asymmetry, we do not yet know the exact mechanism responsible for it. An initially tiny asymmetry seems to be excluded by the inflationary paradigm and therefore it is necessary a baryogenesis period, namely the creation of an asymmetry between baryons and antibaryons. Today we know that the Standard Model of particle physics cannot do it, and therefore the observed matter-antimatter asymmetry can be seen as an evidence of new physics. Baryogenesis models usually involve very high energy physics, which makes these scenarios extremely difficult to test with the available accelerator energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ams-02project.jsc.nasa.gov.

References

  • F.C. Adams, G.L. Kane, M. Mbonye, M.J. Perry, Int. J. Mod. Phys. A 16, 2399 (2001) [hep-ph/0009154]

    Google Scholar 

  • P.A.R. Ade et al., Planck collaboration. Astron. Astrophys. 571, A16 (2014) arXiv:1303.5076 [astro-ph.CO]

  • S.L. Adler, Phys. Rev. 177, 2426 (1969)

    ADS  Google Scholar 

  • I. Affleck, M. Dine, Nucl. Phys. B 249, 361 (1985)

    ADS  Google Scholar 

  • J. Alcaraz et al., AMS collaboration. Phys. Lett. B 461, 387 (1999) [hep-ex/0002048]

    Google Scholar 

  • J. Ambjorn, T. Askgaard, H. Porter, M.E. Shaposhnikov, Nucl. Phys. B 353, 346 (1991)

    ADS  Google Scholar 

  • N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998) [hep-ph/9803315]

    Google Scholar 

  • P.B. Arnold, L.D. McLerran, Phys. Rev. D 36, 581 (1987)

    ADS  Google Scholar 

  • K.R.S. Balaji, T. Biswas, R.H. Brandenberger, D. London, Phys. Lett. B 595, 22 (2004) [hep-ph/0403014]

    Google Scholar 

  • K.R.S. Balaji, T. Biswas, R.H. Brandenberger, D. London, Phys. Rev. D 72, 056005 (2005) [hep-ph/0506013]

    Google Scholar 

  • P. von Ballmoos, Hyperfine Interact. 228, 91 (2014). arXiv:1401.7258 [astro-ph.HE]

  • C. Bambi, A.D. Dolgov, Nucl. Phys. B 784, 132 (2007) [astro-ph/0702350]

    Google Scholar 

  • C. Bambi, A.D. Dolgov, K. Freese, Nucl. Phys. B 763, 91 (2007) [hep-ph/0606321]

    Google Scholar 

  • J.S. Bell, R. Jackiw, Nuovo Cim. A 60, 47 (1969)

    ADS  Google Scholar 

  • S.I. Blinnikov, A.D. Dolgov, K.A. Postnov. arXiv:1409.5736 [astro-ph.HE]

  • M. Boezio et al., PAMELA collaboration. J. Phys. Conf. Ser. 110, 062002 (2008)

    Google Scholar 

  • H.E. Bond, E.P. Nelan, D.A. VandenBerg, G.H. Schaefer, D. Harmer, Astrophys. J. 765, L12 (2013). arXiv:1302.3180 [astro-ph.SR]

  • R.C.E. van den Bosch, K. Gebhardt, K. Gultekin, G. van de Ven, A. van der Wel, J.L. Walsh, Nature 491, 729 (2012). arXiv:1211.6429 [astro-ph.CO]

  • W. Buchmuller, P. Di Bari, M. Plumacher, New J. Phys. 6, 105 (2004) [hep-ph/0406014]

    Google Scholar 

  • W. Buchmuller, P. Di Bari, M. Plumacher, Annals Phys. 315, 305 (2005a) [hep-ph/0401240]

    Google Scholar 

  • W. Buchmuller, R.D. Peccei, T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005b) [hep-ph/0502169]

    Google Scholar 

  • T.S. Bunch, P.C.W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978)

    ADS  Google Scholar 

  • B.J. Carr, S.W. Hawking, Mon. Not. Roy. Astron. Soc. 168, 399 (1974)

    ADS  Google Scholar 

  • M.C. Chen, (2007) hep-ph/0703087

  • J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964)

    ADS  Google Scholar 

  • S.R. Coleman, E.J. Weinberg, Phys. Rev. D 7, 1888 (1973)

    ADS  Google Scholar 

  • D. Coe et al., Astrophys. J. 762, 32 (2013). arXiv:1211.3663 [astro-ph.CO]

  • A.G. Cohen, D.B. Kaplan, Phys. Lett. B 199, 251 (1987)

    ADS  Google Scholar 

  • A.G. Cohen, D.B. Kaplan, Nucl. Phys. B 308, 913 (1988)

    Google Scholar 

  • A.G. Cohen, D.B. Kaplan, A.E. Nelson, Ann. Rev. Nucl. Part. Sci. 43, 27 (1993) [hep-ph/9302210]

    Google Scholar 

  • A.G. Cohen, A. De Rujula, S.L. Glashow, Astrophys. J. 495, 539 (1998) [astro-ph/9707087]

    Google Scholar 

  • R. Cooke, M. Pettini, R.A. Jorgenson, M.T. Murphy, C.C. Steidel, Astrophys. J. 781, 31 (2014). arXiv:1308.3240 [astro-ph.CO]

  • J.J. Cowan et al., Astrophys. J. 572, 861 (2002) [astro-ph/0202429]

    Google Scholar 

  • A. Cucchiara et al., Astrophys. J. 736, 7 (2011). arXiv:1105.4915 [astro-ph.CO]

  • M. Dine, A. Kusenko, Rev. Mod. Phys. 76, 1 (2003) [hep-ph/0303065]

    Google Scholar 

  • P.A.M. Dirac, Proc. Roy. Soc. Lond. A 117, 610 (1928)

    ADS  Google Scholar 

  • A.D. Dolgov, Sov. Phys. JETP 52, 169 (1980) [Zh. Eksp. Teor. Fiz. 79, 337 (1980)]

    Google Scholar 

  • A.D. Dolgov, Phys. Rev. D 24, 1042 (1981)

    ADS  Google Scholar 

  • A.D. Dolgov, Phys. Rept. 222, 309 (1992)

    ADS  Google Scholar 

  • A. Dolgov, J. Silk, Phys. Rev. D 47, 4244 (1993)

    Google Scholar 

  • A.D. Dolgov, (1997) hep-ph/9707419

  • A.D. Dolgov, (2005). hep-ph/0511213

  • A.D. Dolgov, Phys. Atom. Nucl. 73, 588 (2010). arXiv:0903.4318 [hep-ph]

  • A. Dolgov, K. Freese, Phys. Rev. D 51, 2693 (1995) [hep-ph/9410346]

    Google Scholar 

  • A.D. Dolgov, S.H. Hansen, Nucl. Phys. B 548, 408 (1999) [hep-ph/9810428]

    Google Scholar 

  • A.D. Dolgov, P.D. Naselsky, I.D. Novikov (2000). astro-ph/0009407

  • A. Dolgov, D.N. Pelliccia, Nucl. Phys. B 734, 208 (2006) [hep-th/0502197]

    Google Scholar 

  • A. Dolgov, K. Freese, R. Rangarajan, M. Srednicki, Phys. Rev. D 56, 6155 (1997) [hep-ph/9610405]

    Google Scholar 

  • R. Duperray, B. Baret, D. Maurin, G. Boudoul, A. Barrau, L. Derome, K. Protasov, M. Buenerd, Phys. Rev. D 71, 083013 (2005) [astro-ph/0503544]

    Google Scholar 

  • G.R. Dvali, G. Gabadadze, Phys. Lett. B 460, 47 (1999) [hep-ph/9904221]

    Google Scholar 

  • J.R. Ellis, J.E. Kim, D.V. Nanopoulos, Phys. Lett. B 145, 181 (1984)

    ADS  Google Scholar 

  • A. Frebel, N. Christlieb, J.E. Norris, C. Thom, T.C. Beers, J. Rhee, Astrophys. J. 660, L117 (2007) [astro-ph/0703414]

    Google Scholar 

  • V.P. Frolov, I.D. Novikov, Black Hole Physics: Basic Concepts and New Developments (Kluwer Academic, Dordrecht, 1998)

    MATH  Google Scholar 

  • M. Fukugita, S. Yanagita, Phys. Lett. B 174, 45 (1986)

    ADS  Google Scholar 

  • M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, eds. by D. Freedman, P. Van Niuwenhuizen (North Holland, Amsterdam, 1979)

    Google Scholar 

  • S.L. Glashow, in 1979 Cargése Lectures in Physics—Quarks and Leptons, eds. by M. Lévy et al. (Plenum, New York, 1980)

    Google Scholar 

  • G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)

    ADS  MathSciNet  Google Scholar 

  • S.W. Hawking, Nature 248, 30 (1974)

    ADS  Google Scholar 

  • S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)]

    Google Scholar 

  • G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976a)

    Google Scholar 

  • G. ’t Hooft, Phys. Rev. D 14, 3432 (1976b) [Erratum-ibid. D 18, 2199 (1978)]

    Google Scholar 

  • Y.I. Izotov, G. Stasinska, N.G. Guseva, Astron. Astrophys. 558, A57 (2013). arXiv:1308.2100 [astro-ph.CO]

  • J. Kalirai, Nature 486, 90 (2012). arXiv:1205.6802 [astro-ph.GA]

  • A. Kalweit, Light hyper- and anti-nuclei production at the LHC measured with ALICE (2014). https://indico.cern.ch/event/328442

  • M.Y. Khlopov, A.D. Linde, Phys. Lett. B 138, 265 (1984)

    ADS  Google Scholar 

  • D.A. Kirzhnits, JETP Lett. 15, 529 (1972) [Pisma Zh. Eksp. Teor. Fiz. 15, 745 (1972)]

    Google Scholar 

  • D.A. Kirzhnits, A.D. Linde, Phys. Lett. B 42, 471 (1972)

    ADS  Google Scholar 

  • F.R. Klinkhamer, N.S. Manton, Phys. Rev. D 30, 2212 (1984)

    ADS  Google Scholar 

  • M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    ADS  Google Scholar 

  • V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985)

    ADS  Google Scholar 

  • L.D. Landau, Nucl. Phys. 3, 127 (1957)

    Google Scholar 

  • T.D. Lee, Phys. Rept. 9, 143 (1974)

    ADS  Google Scholar 

  • T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956)

    ADS  Google Scholar 

  • A.D. Linde, Phys. Lett. B 116, 335 (1982)

    ADS  Google Scholar 

  • G. Luders, Kong. Dan. Vid. Sel. Mat. Fys. Med. 28N5, 1 (1954)

    Google Scholar 

  • G. Luders, Annals Phys. 2, 1 (1957) [Annals Phys. 281, 1004 (2000)]

    Google Scholar 

  • N.S. Manton, Phys. Rev. D 28, 2019 (1983)

    ADS  MathSciNet  Google Scholar 

  • N. Martin, ALICE collaboration. J. Phys. Conf. Ser. 455, 012007 (2013)

    Google Scholar 

  • S. Matsuura, A.D. Dolgov, S. Nagataki, K. Sato, Prog. Theor. Phys. 112, 971 (2004) [astro-ph/0405459]

    Google Scholar 

  • S. Matsuura, S.I. Fujimoto, M.A. Hashimoto, K. Sato, Phys. Rev. D 75, 068302 (2007). 0704.0635 [astro-ph]

    Google Scholar 

  • S. Matsuura, S.I. Fujimoto, S. Nishimura, M.A. Hashimoto, K. Sato, Phys. Rev. D 72, 123505 (2005) [astro-ph/0507439]

    Google Scholar 

  • F. Melia, Astron. J. 147, 120 (2014). arXiv:1403.0908 [astro-ph.CO]

  • P. Minkowski, Phys. Lett. B 67, 421 (1977)

    ADS  Google Scholar 

  • D.J. Mortlock et al., Nature 474, 616 (2011). arXiv:1106.6088 [astro-ph.CO]

  • R. Nakamura, M.a. Hashimoto, S.i. Fujimoto, N. Nishimura, K. Sato. arXiv:1007.0466 [astro-ph.CO]

  • K.A. Olive et al., Particle data group collaboration. Chin. Phys. C 38, 090001 (2014)

    ADS  Google Scholar 

  • R. Omnes, Phys. Rev. Lett. 23, 38 (1969)

    ADS  Google Scholar 

  • R. Omnes, Phys. Rev. D 1, 723 (1970)

    ADS  Google Scholar 

  • D.N. Page, Phys. Rev. D 13, 198 (1976)

    ADS  Google Scholar 

  • E.A. Paschos, Pramana 62, 359 (2004) [hep-ph/0308261]

    Google Scholar 

  • W. Pauli, in Niels Bohr and the Development of Physics (McGraw-Hill, New York, 1955)

    Google Scholar 

  • P. Picozza, A. Morselli, J. Phys. Conf. Ser. 120, 042004 (2008)

    Google Scholar 

  • A. Riotto, M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999) [hep-ph/9901362]

    Google Scholar 

  • V.A. Rubakov, M.E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996) [Phys. Usp. 39, 461 (1996)] [hep-ph/9603208]

    Google Scholar 

  • A.D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)]

    Google Scholar 

  • M. Sasaki et al., Adv. Space Res. 42, 450 (2008)

    ADS  Google Scholar 

  • A. Schuster, Nature 58, 367 (1898)

    ADS  Google Scholar 

  • J.S. Schwinger, Phys. Rev. 82, 914 (1951)

    ADS  MathSciNet  Google Scholar 

  • A. Seth et al., Nature 513, 398 (2014). arXiv:1409.4769 [astro-ph.GA]

  • G. Steigman, Ann. Rev. Astron. Astrophys. 14, 339 (1976)

    ADS  Google Scholar 

  • G. Steigman, JCAP 0810, 001 (2008). 0808.1122 [astro-ph]

    Google Scholar 

  • J. Strader et al., Astrophys. J. 775, L6 (2013). arXiv:1307.7707 [astro-ph.CO]

  • A. Vilenkin, L.H. Ford, Phys. Rev. D 26, 1231 (1982)

    ADS  MathSciNet  Google Scholar 

  • C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Phys. Rev. 105, 1413 (1957)

    ADS  Google Scholar 

  • T. Yanagida, in Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, eds. by O. Sawada, A. Sugamoto (KEK, Tsukuba, Japan, 1979)

    Google Scholar 

  • Y.B. Zeldovich, Pisma. Zh. Eksp. Teor. Fiz. 24, 29 (1976a)

    Google Scholar 

  • Y.B. Zeldovich, Phys. Lett. A 59, 254 (1976b)

    Google Scholar 

  • Y.B. Zeldovich, Zh Eksp, Teor. Fiz. 72, 18 (1977)

    Google Scholar 

  • Y.B. Zeldovich, I.Y. Kobzarev, L.B. Okun, Zh. Eksp. Teor. Fiz. 67, 3 (1974) [Sov. Phys. JETP 40, 1 (1974)]

    Google Scholar 

  • W. Zheng et al., Nature 489, 406 (2012). arXiv:1204.2305 [astro-ph.CO]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Bambi .

Problems

Problems

7.1

How can the charge asymmetry generated in heavy particle decays vanish in equilibrium? It is stated in the literature that the inverse decay does the job. However, one can see that it is not so because, using CPT, one finds:

$$\begin{aligned} \varGamma _{\bar{q} \bar{q} \rightarrow \bar{X} } = (1+\varDelta _q)\varGamma _q \, , \quad \varGamma _{ q l \rightarrow \bar{X} } = (1-\varDelta _l)\varGamma _l \, , \nonumber \\ \varGamma _{ q q \rightarrow X } = (1-\varDelta _q)\varGamma _q \, , \quad \varGamma _{ \bar{q} \bar{l} \rightarrow X } = (1+\varDelta _l)\varGamma _l \, . \end{aligned}$$
(7.63)

Thus direct and inverse decays produce the same sign of baryon asymmetry!

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bambi, C., Dolgov, A.D. (2016). Baryogenesis. In: Introduction to Particle Cosmology. UNITEXT for Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48078-6_7

Download citation

Publish with us

Policies and ethics