Skip to main content

Differential Bisimulation for a Markovian Process Algebra

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

Abstract

Formal languages with semantics based on ordinary differential equations (ODEs) have emerged as a useful tool to reason about large-scale distributed systems. We present differential bisimulation, a behavioral equivalence developed as the ODE counterpart of bisimulations for languages with probabilistic or stochastic semantics. We study it in the context of a Markovian process algebra. Similarly to Markovian bisimulations yielding an aggregated Markov process in the sense of the theory of lumpability, differential bisimulation yields a partition of the ODEs underlying a process algebra term, whereby the sum of the ODE solutions of the same partition block is equal to the solution of a single (lumped) ODE. Differential bisimulation is defined in terms of two symmetries that can be verified only using syntactic checks. This enables the adaptation to a continuous-state semantics of proof techniques and algorithms for finite, discrete-state, labeled transition systems. For instance, we readily obtain a result of compositionality, and provide an efficient partition-refinement algorithm to compute the coarsest ODE aggregation of a model according to differential bisimulation.

This work was partially supported by the EU project QUANTICOL, 600708. The postdoctoral fellowship of G.I. is supported by CAPES. Part of this research has been carried out while the three authors were at University of Southampton, UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All proofs are provided in the extended technical report [15].

  2. 2.

    \(P. comp [\alpha ]\) is nil if \(\alpha \not \in \mathcal {A}(P)\), and free if \(\alpha \in \mathcal {A}(P)\) and \(\alpha \not \in \mathcal {D}(P,{\mathcal {M}})\), so to tell apart states performing different actions.

References

  1. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardo, M.: A survey of Markovian behavioral equivalences. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 180–219. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31(1), 59–75 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchholz, P.: Markovian process algebra: composition and equivalence. In: Proceedings of 2nd PAPM Workshop. Erlangen, Germany (1994)

    Google Scholar 

  5. Camporesi, F., Feret, J.: Formal reduction for rule-based models. ENTCS 276, 29–59 (2011)

    MathSciNet  Google Scholar 

  6. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. TCS 410(33–34), 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: LICS, pp. 362–381 (2010)

    Google Scholar 

  8. Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1), 69–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical, control, and hybrid systems. TCS 342(2–3), 229–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra. TCS 411(22–24), 2260–2297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for MTIPP. In: Proceedings of Process Algebra and Probabilistic Methods, pp. 71–87. Erlangen (1994)

    Google Scholar 

  13. Hermanns, H., Siegle, M.: Bisimulation algorithms for stochastic process algebras and their BDD-based implementation. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, p. 244. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Hillston, J.: A Compositional Approach to Performance Modelling, CUP. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  15. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. Extended Version. QUANTICOL TR-QC-04-2015 (2015). http://milner.inf.ed.ac.uk/wiki/files/W232G9A7/mfcs2015ExtendedTRpdf.html

  16. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7(1), 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurtz, T.G.: Approximation of Population Processes, vol. 36. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  18. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 2(98), 391–408 (1998)

    Article  Google Scholar 

  20. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM 16(6), 973–989 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE TAC 49, 2160–2172 (2004)

    Google Scholar 

  23. Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE TSE 38(1), 205–219 (2012)

    Google Scholar 

  25. Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations in Markovian process algebra. JLAMP 84(2), 238–258 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 380–394. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Tribastone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iacobelli, G., Tribastone, M., Vandin, A. (2015). Differential Bisimulation for a Markovian Process Algebra. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics