Skip to main content

Strong Inapproximability of the Shortest Reset Word

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

Abstract

The Černý conjecture states that every n-state synchronizing automaton has a reset word of length at most \((n-1)^2\). We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is \(\mathrm {NP}\)-hard and \(\mathrm {coNP}\)-hard, and complete for the \(\mathrm {DP}\) class, and that approximating the length of the shortest reset word within a factor of \(O(\log n)\) is \(\mathrm {NP}\)-hard [Gerbush and Heeringa, CIAA’10], even for the binary alphabet [Berlinkov, DLT’13]. We significantly improve on these results by showing that, for every \(\varepsilon >0\), it is \(\mathrm {NP}\)-hard to approximate the length of the shortest reset word within a factor of \(n^{1-\varepsilon }\). This is essentially tight since a simple O(n)-approximation algorithm exists.

Supported by the NCN grant 2011/01/D/ST6/07164.

P. Gawrychowski—Currently holding a post-doctoral position at Warsaw Center of Mathematics and Computer Science.

D. Straszak—Part of the work was carried out while the author was a student at Institute of Computer Science, University of Wrocław, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Amortized free bit complexity is a parameter of a PCP verifier which essentially corresponds to the ratio between the free bit complexity and the logarithm of error probability.

References

  1. Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata. Theor. Comput. Sci. 330(1), 3–13 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability–towards tight results. SIAM J. Comput. 27, 804–915 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berlinkov, M.V.: Approximating the minimum length of synchronizing words is hard. Theor. Comp. Sys. 54(2), 211–223 (2014)

    Article  MathSciNet  Google Scholar 

  7. Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61–67. Springer, Heidelberg (2014)

    Google Scholar 

  8. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerbush, M., Heeringa, B.: Approximating minimum reset sequences. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 154–162. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Grech, M., Kisielewicz, A.: The Černý conjecture for automata respecting intervals of a directed graph. Discrete Mathematics & Theoretical Computer Science 15(3), 61–72 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Hastad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, FOCS 1996, pp. 627–636 (1996)

    Google Scholar 

  13. Hastad, J., Khot, S.: Query efficient PCPs with perfect completeness. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 610–619, October 2001

    Google Scholar 

  14. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci. 295, 223–232 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Pin, J.: On two combinatorial problems arising from automata theory. In: Combinatorial Mathematics Proceedings of the International Colloquium on Graph Theory and Combinatorics, vol. 75, pp. 535–548. North-Holland (1983)

    Google Scholar 

  17. Rystsov, I.: Reset words for commutative and solvable automata. Theor. Comput. Sci. 172(1–2), 273–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theor. Comput. Sci. 412(39), 5487–5491 (2011)

    Article  MATH  Google Scholar 

  19. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 681–690 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Straszak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gawrychowski, P., Straszak, D. (2015). Strong Inapproximability of the Shortest Reset Word. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics