Skip to main content

On the Complexity of Master Problems

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

Abstract

A master solution for an instance of a combinatorial problem is a solution with the property that it is optimal for any sub instance. For example, a master tour for an instance of the TSP problem has the property that restricting the solution to any subset S results in an optimal solution for S. The problem of deciding if a TSP instance has a master tour is known to be polynomially solvable. Here, we show that the master tour problem is \(\varDelta _2^p\)-complete in the scenario setting, that means, the subsets S are restricted to some given sets. We also show that the master versions of Steiner tree and maximum weighted satisfiability are also \(\varDelta _2^p\)-complete, as is deciding whether the optimal solution for these problems is unique. Like for the master tour problem, the special case of the master version of Steiner tree where every subset of vertices is a possible scenario turns out to be polynomially solvable. All the results also hold for metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deineko, V.G., Rudolf, R., Woeginger, G.J.: Sometimes travelling is easy: The master tour problem. SIAM J. Discrete Math. 11(1), 81–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gupta, A., Hajiaghayi, M.T., Räcke, H.: Oblivious network design. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 970–979 (2006)

    Google Scholar 

  3. Gorodezky, I., Kleinberg, R.D., Shmoys, D.B., Spencer, G.: Improved lower bounds for the universal and a priori TSP. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS, vol. 6302, pp. 178–191. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Schalekamp, F., Shmoys, D.B.: Algorithms for the universal and a priori TSP. Oper. Res. Lett. 36(1), 1–3 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shmoys, D.B., Talwar, K.: A constant approximation algorithm for the a priori traveling salesman problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 331–343. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Papadimitriou, C.H.: On the complexity of unique solutions. J. ACM 31(2), 392–400 (1984)

    Article  MathSciNet  Google Scholar 

  8. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3), 490–509 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Papadimitriou, C.H., Yannakakis, M.: The complexity of facets (and some facets of complexity). J. Comput. Syst. Sci. 28(2), 244–259 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wechsung, G.: On the boolean closure of NP. In: Budach, L. (ed.) Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 199, pp. 485–493. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  11. Blass, A., Gurevich, Y.: On the unique satisfiability problem. Inf. Control 55(1–3), 80–88 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47(3), 85–93 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hauptmann, M.: Approximation complexity of optimization problems: Structural foundations and Steiner tree problems. Ph.D thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn van Ee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Ee, M., Sitters, R. (2015). On the Complexity of Master Problems. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics