Skip to main content

On Probabilistic Space-Bounded Machines with Multiple Access to Random Tape

  • Conference paper
  • First Online:
Book cover Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

  • 935 Accesses

Abstract

We investigate probabilistic space-bounded Turing machines that are allowed to make multiple passes over the random tape. As our main contribution, we establish a connection between derandomization of such probabilistic space-bounded classes to the derandomization of probabilistic time-bounded classes. Our main result is the following.

  • For some integer \(k>0\), if all the languages accepted by bounded-error randomized log-space machines that use \(O(\log n \log ^{(k+3)} n)\) random bits and make \(O(\log ^{(k)} n)\) passes over the random tape is in deterministic polynomial-time, then \(\mathrm{ BPTIME}(n) \subseteq \mathrm{ DTIME}(2^{o(n)})\). Here \(\log ^{(k)} n\) denotes \(\log \) function applied k times iteratively.

This result can be interpreted as follows: If we restrict the number of random bits to \(O(\log n)\) for the above randomized machines, then the corresponding set of languages is trivially known to be in P. Further, it can be shown that (proof is given in the main body of the paper) if we instead restrict the number of passes to only O(1) for the above randomized machines, then the set of languages accepted is in P. Thus our result implies that any non-trivial extension of these simulations will lead to a non-trivial and unknown derandomization of \(\mathrm{ BPTIME}(n)\). Motivated by this result, we further investigate the power of multi-pass, probabilistic space-bounded machines and establish additional results.

D. Mandal and A. Pavan—Research Supported in part by NSF grants 0916797, 1421163.

N.V. Vinodchandran—Research Supported in part by NSF grants 0916525, 1422668.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We only consider probabilistic machines that halt on all inputs on all settings of the random tape. If we do not require the machines to halt, then we get a potentially larger class of languages [13, 20].

References

  1. Adleman, L.M.: Two theorems on random polynomial time. In: Proceedings of the 19th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 75–83 (1978)

    Google Scholar 

  2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Borodin, A., Cook, S., Pippenger, N.: Parallel computation for well-endowed rings and space-bounded probabilistic machines. Inf. Control 58(1–3), 113–136 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chung, K.M., Reingold, O., Vadhan, S.: S-T connectivity on digraphs with a known stationary distribution. ACM Trans. Algorithms 7(3), 30 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. David, M., Nguyen, P., Papakonstantinou, P.A., Sidiropoulos, A.: Computationally Limited Randomness. In: Proceedings of the Innovations in Theoretical Computer Science (ITCS) (2011)

    Google Scholar 

  6. David, M., Papakonstantinou, P.A., Sidiropoulos, A.: How strong is Nisan’s pseudo-random generator? Inf. Process. Lett. 111(16), 804–808 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fortnow, L., Klivans, A.R.: Linear advice for randomized logarithmic space. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 469–476. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Gill, J.: Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6(4), 675–695 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gutfreund, D., Viola, E.: Fooling parity tests with parity gates. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 381–392. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Hopcroft, J.H., Paul, W.J., Valiant, L.G.: On Time Versus Space. J. ACM 24(2), 332–337 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for network algorithms. In: Proceedings of the 26th ACM Symposium on Theory of Computing (STOC), pp. 356–364 (1994)

    Google Scholar 

  12. Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite state automata and NL versus NP. Theor. Comput. Sci. 302, 257–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karpinski, M., Verbeek, R.: There is no polynomial deterministic space simulation of probabilistic space with a two-way random-tape generator. Inf. Control 67(1985), 158–162 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lipton, R.J., Viglas, A.: Non-uniform depth of polynomial time and space simulations. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 311–320. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4), 449–461 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nisan, N.: On read once vs. multiple access to randomness in logspace. Theor. Comput. Sci. 107(1), 135–144 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raz, R., Reingold, O.: On recycling the randomness of states in space bounded computation. In: Proceedings of the 31st ACM Symposium on Theory of Computing (STOC), pp. 159–168 (1999)

    Google Scholar 

  18. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom walks on regular digraphs and the \({\rm RL}\) vs. \({\rm L}\) problem. In: Proceedings of the 38th ACM Symposium on Theory of Computing (STOC), p. 457 (2006)

    Google Scholar 

  20. Saks, M.: Randomization and derandomization in space-bounded computation. In: Proceedings of the 11th IEEE Conference on Computational Complexity (1996)

    Google Scholar 

  21. Saks, M., Zhou, S.: \({\rm BPSPACE}(S) \subseteq {\rm DSPACE}(S^{3/2})\). J. Comput. Syst. Sci. 403, 376–403 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Santhanam, R., van Melkebeek, D.: Holographic proofs and derandomization. SIAM J. Comput. 35(1), 59–90 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mandal, D., Pavan, A., Vinodchandran, N.V. (2015). On Probabilistic Space-Bounded Machines with Multiple Access to Random Tape. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics